Application of Carbon Nanotube-Based Materials as Interlayers in High-Performance Lithium-Sulfur Batteries: A Review

被引:29
|
作者
Wei, Huijie [1 ]
Liu, Yong [1 ,2 ]
Zhai, Xiaoliang [1 ]
Wang, Fei [1 ]
Ren, Xinyuan [3 ]
Tao, Feng [1 ]
Li, Tengfei [1 ]
Wang, Guangxin [1 ]
Ren, Fengzhang [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Mat Sci & Engn, Prov & Ministerial Coconstruct Collaborat Innovat, Henan Key Lab Nonferrous Mat Sci & Proc Technol, Luoyang, Peoples R China
[2] Henan Univ Sci & Technol, Natl Joint Engn Res Ctr Abras Control & Molding M, Henan Key Lab High Temp Struct & Funct Mat, Luoyang, Peoples R China
[3] Henan Univ Sci & Technol, Sch Art & Design, Luoyang, Peoples R China
来源
FRONTIERS IN ENERGY RESEARCH | 2020年 / 8卷 / 08期
关键词
lithium-sulfur batteries; carbon nanotubes; CNTs-based materials; interlayer; lithium polysulfides; LI-S BATTERIES; POLYSULFIDE-TRAPPING INTERFACE; IMPROVE CYCLE PERFORMANCE; MODIFIED SEPARATOR; COATED SEPARATOR; ELECTROCHEMICAL PERFORMANCE; RATIONAL DESIGN; DENDRITE-FREE; MULTIFUNCTIONAL SEPARATOR; COMPOSITE CATHODE;
D O I
10.3389/fenrg.2020.585795
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the ever-increasing demands of electrochemical energy storage, lithium-sulfur (Li-S) batteries have drawn more attention because of their superior theoretical energy density and high specific capacity. However, practical applications of Li-S batteries suffer from problems such as low conductivity of sulfur and discharged products, severe polysulfide shuttling effect, and large volume change of sulfur during cycling, resulting in sluggish rate performance, and unsatisfactory cycle life. Various nanostructured carbon materials have been served as barrier layers to overcome these problems. In particular, carbon nanotubes (CNTs) with unique 1D nanostructure, have been introduced to Li-S batteries as the intermediate layers because of its superior flexibility, excellent electrical conductivity, and good chemical stability. Moreover, CNTs and CNTs-based barrier layers could also curb lithium polysulfides shuttling. In the minireview, we summarize recent works of CNTs-based materials as modifying interlayers for Li-S batteries. In addition, the strategies to enhance electrochemical performances of the batteries are summarized and discussed. Finally, the challenges and prospects for future research of CNTs-based materials as interlayer are proposed. We hope this review will be useful for designing and fabricating high-performance Li-S batteries and boost their practical applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Carbon nitride based mesoporous materials as cathode matrix for high performance lithium-sulfur batteries
    Li, Xueliang
    Xu, Congsheng
    Zhao, Kun
    Wang, Yiyi
    Pan, Lisheng
    RSC ADVANCES, 2016, 6 (16): : 13572 - 13580
  • [42] Intertwined Nitrogen-Doped Carbon Nanotube Microsphere as Polysulfide Grappler for High-Performance Lithium-Sulfur Batteries
    Xiang, Kaixiong
    Chen, Manfang
    Hu, Jun
    Wang, Sicheng
    Wen, Xiaoyu
    Zhu, Yirong
    Chen, Han
    Shu, Hongbo
    CHEMELECTROCHEM, 2019, 6 (05): : 1466 - 1474
  • [43] Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries
    Wang, Dexian
    Fu, Aiping
    Li, Hongliang
    Wang, Yiqian
    Guo, Peizhi
    Liu, Jingquan
    Zhao, Xiu Song
    JOURNAL OF POWER SOURCES, 2015, 285 : 469 - 477
  • [44] Oxidized multiwall carbon nanotube modified separator for high performance lithium-sulfur batteries with high sulfur loading
    Cheng, Xing
    Wang, Weikun
    Wang, Anbang
    Yuan, Keguo
    Jin, Zhaoqing
    Yang, Yusheng
    Zhao, Xiuying
    RSC ADVANCES, 2016, 6 (92): : 89972 - 89978
  • [45] Synthesis of porous carbon nanofibers for high-performance rechargeable lithium-sulfur batteries
    Zhang, Xiang-Qian
    Sun, Qiang
    Li, Wen-Cui
    He, Bin
    Lu, An-Hui
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [46] Greenly growing carbon nanotubes on graphene for high-performance lithium-sulfur batteries
    Zhou, Yucheng
    Chen, Ruoxi
    Gao, Zan
    He, Jiajun
    Li, Xiaodong
    MATERIALS TODAY ENERGY, 2023, 37
  • [47] Carbon Nanotube Doped with Gaseous-phase Silica/Sulfur Composite as a Cathode Material for High-performance Lithium-Sulfur Batteries
    Guo, Yafang
    Jiang, Aihua
    Qi, Meng
    Hou, Yongxuan
    Xiao, Jianrong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (12): : 11343 - 11352
  • [48] Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium-sulfur batteries
    Li, Rui
    Zhang, Miao
    Li, Yingru
    Chen, Ji
    Yao, Bowen
    Yu, Mingpeng
    Shi, Gaoquan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (16) : 11104 - 11110
  • [49] Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries
    Wang, Fangzheng
    Han, Yuying
    Feng, Xin
    Xu, Rui
    Li, Ang
    Wang, Tao
    Deng, Mingming
    Tong, Cheng
    Li, Jing
    Wei, Zidong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [50] Recycling Antibiotic Bacterial Residues for Application in High-Performance Lithium-Sulfur Batteries
    Wang, Qian
    Zhong, Hui
    Jiang, Min
    Liao, Qunchao
    Yang, Juan
    Zhou, Xiangyang
    Tang, Jingjing
    CHEMELECTROCHEM, 2018, 5 (16): : 2235 - 2241