Informed classification of sweeteners/bitterants compounds via explainable machine learning

被引:11
|
作者
Maroni, Gabriele [1 ]
Pallante, Lorenzo [2 ]
Di Benedetto, Giacomo [3 ]
Deriu, Marco A.
Piga, Dario [1 ]
Grasso, Gianvito [1 ,4 ]
机构
[1] Dalle Molle Inst Artificial Intelligence IDSIA USI, SUPSI, Via La Santa 1, CH-6962 Lugano, Switzerland
[2] Politecn Torino, Polito BIO MedLab, Dept Mech & Aerosp Engn, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] 7HC Srl, Via Giovanni Paisiello 55, I-00198 Rome, Italy
[4] Univ Svizzera Italiana USI, Scuola Univ Professionale Svizzera Italiana SUPSI, Ist Dalle Molle Studi SullIntelligenza Artificial, CH-6928 Manno, Switzerland
来源
CURRENT RESEARCH IN FOOD SCIENCE | 2022年 / 5卷
关键词
Sweet; bitter dichotomy; Explainable machine learning; Natural compounds; Sweetener; Bitterants; TASTE RECEPTORS; PREDICTION; SWEET; DIHYDROCHALCONE; BITTERNESS; CELLS;
D O I
10.1016/j.crfs.2022.11.014
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Perception of taste is an emergent phenomenon arising from complex molecular interactions between chemical compounds and specific taste receptors. Among all the taste perceptions, the dichotomy of sweet and bitter tastes has been the subject of several machine learning studies for classification purposes. While previous studies have provided accurate sweeteners/bitterants classifiers, there is ample scope to enhance these models by enriching the understanding of the molecular basis of bitter-sweet tastes. Towards these goals, our study focuses on the development and testing of several machine learning strategies coupled with the novel SHapley Additive ex-Planations (SHAP) for a rational sweetness/bitterness classification. This allows the identification of the chemical descriptors of interest by allowing a more informed approach toward the rational design and screening of sweeteners/bitterants. To support future research in this field, we make all datasets and machine learning models publicly available and present an easy-to-use code for bitter-sweet taste prediction.
引用
收藏
页码:2270 / 2280
页数:11
相关论文
共 50 条
  • [1] Premexotac: Machine learning bitterants predictor for advancing pharmaceutical development
    De Leon, Gerardo
    Frohlich, Eleonore
    Fink, Elisabeth
    Di Pizio, Antonella
    Salar-Behzadi, Sharareh
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2022, 628
  • [2] Explainable Machine Learning via Argumentation
    Prentzas, Nicoletta
    Pattichis, Constantinos
    Kakas, Antonis
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 371 - 398
  • [3] Towards physics-informed explainable machine learning and causal models for materials research
    Ghosh, Ayana
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 233
  • [4] Explainable Machine Learning on Classification of Healthy and Unhealthy Hair
    Chow, Weng Yan
    Heng, Wei Wei
    Abdul-Kadir, Nurul Ashikin
    Nadaraj, Hrikeshraj
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 162 - 167
  • [5] PointHop: An Explainable Machine Learning Method for Point Cloud Classification
    Zhang, Min
    You, Haoxuan
    Kadam, Pranav
    Liu, Shan
    Kuo, C-C Jay
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1744 - 1755
  • [6] Explainable artificial intelligence and machine learning algorithms for classification of thyroid disease
    Kumari, Priyanka
    Kaur, Baljinder
    Rakhra, Manik
    Deka, Aniruddha
    Byeon, Haewon
    Asenso, Evans
    Rawat, Anil Kumar
    DISCOVER APPLIED SCIENCES, 2024, 6 (07)
  • [7] Enhancing Gene Expression Classification Through Explainable Machine Learning Models
    Do T.-N.
    SN Computer Science, 5 (5)
  • [8] Explainable machine learning for performance anomaly detection and classification in mobile networks
    Ramirez, Juan M.
    Diez, Fernando
    Rojo, Pablo
    Mancuso, Vincenzo
    Fernandez-Anta, Antonio
    COMPUTER COMMUNICATIONS, 2023, 200 : 113 - 131
  • [9] Machine learning approaches to predict TAS2R receptors for bitterants
    Ferri, Francesco
    Cannariato, Marco
    Deriu, Marco Agostino
    Pallante, Lorenzo
    BIOTECHNOLOGY AND BIOENGINEERING, 2024, 121 (06) : 1755 - 1758
  • [10] Automation of quantum dot measurement analysis via explainable machine learning
    Schug, Daniel
    Kovach, Tyler J.
    Wolfe, M. A.
    Benson, Jared
    Park, Sanghyeok
    Dodson, J. P.
    Corrigan, J.
    Eriksson, M. A.
    Zwolak, Justyna P.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2025, 6 (01):