On an Optimal L1-Control Problem in Coefficients for Linear Elliptic Variational Inequality

被引:8
作者
Kupenko, Olha P. [1 ,2 ]
Manzo, Rosanna [3 ]
机构
[1] Natl Min Univ, Dept Syst Anal & Control, UA-49005 Dnepropetrovsk, Ukraine
[2] Natl Tech Univ Ukraine, Kiev Polytech Inst, Inst Appl & Syst Anal, Res Lab Nonlinear Anal Differential Operator Syst, UA-03056 Kiev, Ukraine
[3] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, I-84084 Fisciano, Italy
关键词
DEGENERATE EQUATIONS; MONOTONE TYPE; SYNCHRONIZATION;
D O I
10.1155/2013/821964
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider optimal control problems for linear degenerate elliptic variational inequalities with homogeneous Dirichlet boundary conditions. We take the matrix-valued coefficients A(x) in themain part of the elliptic operator as controls in L-1(Omega; RN(N+1)/2). Since the eigenvalues of such matrices may vanish and be unbounded in Omega, it leads to the "noncoercivity trouble." Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of the optimal control problem in the class of the so-called H-admissible solutions.
引用
收藏
页数:13
相关论文
共 32 条
  • [1] [Anonymous], 1998, Mat. Sb.
  • [2] [Anonymous], 2000, MAT SB, DOI 10.4213/sm491
  • [3] [Anonymous], 1968, Ann. Mat. Pura Appl. (4), DOI DOI 10.1007/BF02413623
  • [4] Bouchitt G., 2001, J. Eur. Math. Soc, V3, P139, DOI [10.1007/s100970000027, DOI 10.1007/S100970000027]
  • [5] Buttazzo G, 2005, RIV MAT UNIV PARMA, V4, P115
  • [6] Weak optimal controls in coefficients for linear elliptic problems
    Buttazzo, Giuseppe
    Kogut, Peter I.
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2011, 24 (01): : 83 - 94
  • [7] On a variational degenerate elliptic problem
    Caldiroli, P
    Musina, R
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02): : 187 - 199
  • [8] Optimization by the homogenization method for nonlinear elliptic Dirichlet systems
    Calvo-Jurado, Carmen
    Casado-Diaz, Juan
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2007, 4 (01) : 53 - 63
  • [9] Chabrowski J., 1996, Portugaliae Math, V53, P167
  • [10] Chiadio Piat V., 1994, J. Convex Anal, P135