Deep neural networks and transfer learning applied to multimedia web mining

被引:10
|
作者
Lopez-Sanchez, Daniel [1 ]
Gonzalez Arrieta, Angelica [1 ]
Corchado, Juan M. [1 ]
机构
[1] Univ Salamanca, Dept Comp Sci & Automat, Salamanca, Spain
来源
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE | 2018年 / 620卷
关键词
Web mining; deep learning; transfer learning;
D O I
10.1007/978-3-319-62410-5_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The growth in the amount of multimedia content available online supposes a challenge for search and recommender systems. This information in the form of visual elements is of great value to a variety of web mining tasks; however, the mining of these resources is a difficult task due to the complexity and variability of the images. In this paper, we propose applying a deep learning model to the problem of web categorization. In addition, we make use of a technique known as transfer or inductive learning to drastically reduce the computational cost of the training phase. Finally, we report experimental results on the effectiveness of the proposed method using different classification methods and features from various depths of the deep model.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [21] Breast Cancer Prognosis Based on Transfer Learning Techniques in Deep Neural Networks
    Diwakaran, M.
    Surendran, D.
    INFORMATION TECHNOLOGY AND CONTROL, 2023, 52 (02): : 381 - 396
  • [22] MSDeepAMR: antimicrobial resistance prediction based on deep neural networks and transfer learning
    Lopez-Cortes, Xaviera A.
    Manriquez-Troncoso, Jose M.
    Hernandez-Garcia, Ruber
    Peralta, Daniel
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [23] EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks
    Poyatos, Javier
    Molina, Daniel
    Martinez, Aritz D.
    Del Ser, Javier
    Herrera, Francisco
    NEURAL NETWORKS, 2023, 158 : 59 - 82
  • [24] On the Impact of Data Set Size in Transfer Learning Using Deep Neural Networks
    Soekhoe, Deepak
    van der Putten, Peter
    Plaat, Aske
    ADVANCES IN INTELLIGENT DATA ANALYSIS XV, 2016, 9897 : 50 - 60
  • [25] Transfer Learning with Deep Recurrent Neural Networks for Remaining Useful Life Estimation
    Zhang, Ansi
    Wang, Honglei
    Li, Shaobo
    Cui, Yuxin
    Liu, Zhonghao
    Yang, Guanci
    Hu, Jianjun
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [26] ATTL: An Automated Targeted Transfer Learning with Deep Neural Networks
    Ahamed, Sayyed Farid
    Aggarwal, Priyanka
    Shetty, Sachin
    Lanus, Erin
    Freeman, Laura J.
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [27] A Transfer Learning Evaluation of Deep Neural Networks for Image Classification
    Abou Baker, Nermeen
    Zengeler, Nico
    Handmann, Uwe
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (01): : 22 - 41
  • [28] Automatic phantom test pattern classification through transfer learning with deep neural networks
    Fricks, Rafael B.
    Solomon, Justin
    Samei, Ehsan
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [29] Transfer Learning in Deep Convolutional Neural Networks for Detection of Architectural Distortion in Digital Mammography
    Costa, Arthur C.
    Oliveira, Helder C. R.
    Borges, Lucas R.
    Vieira, Marcelo A. C.
    15TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI2020), 2020, 11513
  • [30] Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning
    Md Farid, Dewan
    Kumer Das, Proshanta
    Islam, Monirul
    Sina, Ebna
    IEEE ACCESS, 2025, 13 : 26429 - 26455