Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds

被引:60
作者
Deplaine, H. [1 ]
Lebourg, M. [1 ,2 ]
Ripalda, P.
Vidaurre, A. [1 ,2 ]
Sanz-Ramos, P. [3 ]
Mora, G. [3 ]
Prosper, F. [4 ]
Ochoa, I. [2 ,5 ]
Doblare, M. [2 ,5 ]
Gomez Ribelles, J. L. [1 ,2 ]
Izal-Azcarate, I. [3 ]
Gallego Ferrer, G. [1 ,2 ]
机构
[1] Univ Politecn Valencia, Ctr Biomat & Tissue Engn, Valencia 46022, Spain
[2] Biomed Res Networking Ctr Bioengn Biomat & Nanome, Zaragoza, Spain
[3] Univ Navarra, Lab Orthopaed Res, Fac Med, E-31080 Pamplona, Spain
[4] Univ Navarra, Univ Navarra Clin, Hematol & Cell Therapy Area, E-31080 Pamplona, Spain
[5] Univ Zaragoza, Grp Struct Mech & Mat Modelling GEMM, Aragon Inst Engn Res I3A, Zaragoza, Spain
关键词
bioactive material; biomimetic; osteogenesis; composite; hard tissue; scaffolds; BONE-LIKE APATITE; IN-VITRO; OSTEOGENIC DIFFERENTIATION; COMPOSITE SCAFFOLDS; PROLIFERATION; SURFACE; GROWTH; REGENERATION; DEGRADATION; BEHAVIOR;
D O I
10.1002/jbm.b.32831
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Polymerceramic composites obtained as the result of a mineralization process hold great promise for the future of tissue engineering. Simulated body fluids (SBFs) are widely used for the mineralization of polymer scaffolds. In this work an exhaustive study with the aim of optimizing the mineralization process on a poly(L-lactic acid) (PLLA) macroporous scaffold has been performed. We observed that when an air plasma treatment is applied to the PLLA scaffold its hydroxyapatite nucleation ability is considerably improved. However, plasma treatment only allows apatite deposition on the surface of the scaffold but not in its interior. When a 5 wt % of synthetic hydroxyapatite (HAp) nanoparticles is mixed with PLLA a more abundant biomimetic hydroxyapatite layer grows inside the scaffold in SBF. The morphology, amount, and composition of the generated biomimetic hydroxyapatite layer on the pores' surface have been analyzed. Large mineralization times are harmful to pure PLLA as it rapidly degrades and its elastic compression modulus significantly decreases. Degradation is retarded in the composite scaffolds because of the faster and extensive biomimetic apatite deposition and the role of HAp to control the pH. Mineralized scaffolds, covered by an apatite layer in SBF, were implanted in osteochondral lesions performed in the medial femoral condyle of healthy sheep. We observed that the presence of biomimetic hydroxyapatite on the pore's surface of the composite scaffold produces a better integration in the subchondral bone, in comparison to bare PLLA scaffolds. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 101B: 173186, 2013.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 73 条
[1]   Influence of the macro and micro-porous structure on the mechanical behavior of poly(L-lactic acid) scaffolds [J].
Acosta Santamaria, V. ;
Deplaine, H. ;
Mariggio, D. ;
Villanueva-Molines, A. R. ;
Garcia-Aznar, J. M. ;
Gomez Ribelles, J. L. ;
Doblare, M. ;
Gallego Ferrer, G. ;
Ochoa, I. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (23) :3141-3149
[2]  
Agrawal CM, 1997, J BIOMED MATER RES, V38, P105, DOI 10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO
[3]  
2-U
[4]   Polymer/bioactive glass nanocomposites for biomedical applications: A review [J].
Boccaccini, Aldo R. ;
Erol, Melek ;
Stark, Wendelin J. ;
Mohn, Dirk ;
Hong, Zhongkui ;
Mano, Joao F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) :1764-1776
[5]   Investigation of the poly(L-lactide)/poly(D-lactide) stereocomplex at the air-water interface by polarization modulation infrared reflection absorption spectroscopy [J].
Bourque, H ;
Laurin, I ;
Pézolet, M ;
Klass, JM ;
Lennox, RB ;
Brown, GR .
LANGMUIR, 2001, 17 (19) :5842-5849
[6]   Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction [J].
Budyanto, L. ;
Goh, Y. Q. ;
Ooi, C. P. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 (01) :105-111
[7]   Electrospun nanofibrous matrix improves the regeneration of dense cortical bone [J].
Cai, You Zhi ;
Wang, Lin Lin ;
Cai, Hong Xin ;
Qi, Yi Ying ;
Zou, Xiao Hui ;
Ouyang, Hong Wei .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 95A (01) :49-57
[8]   Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:: In vitro evaluation using mesenchymal stem cells [J].
Chen, F. ;
Lam, W. M. ;
Lin, C. J. ;
Qiu, G. X. ;
Wu, Z. H. ;
Luk, K. D. K. ;
Lu, W. W. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2007, 82B (01) :183-191
[9]   Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds [J].
Chen, Jinglu ;
Chu, Benjamin ;
Hsiao, Benjamin S. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 79A (02) :307-317
[10]   Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro [J].
Chou, L ;
Marek, B ;
Wagner, WR .
BIOMATERIALS, 1999, 20 (10) :977-985