Observation of rogue events in non-Markovian light

被引:8
作者
Frostig, Hadas [1 ,2 ]
Vidal, Itamar [1 ,3 ]
Fischer, Robert [4 ]
Sheinfux, Hanan Herzig [5 ,6 ]
Silberberg, Yaron [1 ]
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] LOQEF, BR-57039739 Maceio, Alagoas, Brazil
[4] Univ Tecnol Fed Parana, CPGEI, BR-80230901 Curitiba, PR, Brazil
[5] Technion Israel Inst Technol, Phys Dept, IL-32000 Haifa, Israel
[6] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
基金
以色列科学基金会;
关键词
MULTIPLE-SCATTERING; WAVES; DYNAMICS; SOLITON;
D O I
10.1364/OPTICA.390429
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efforts to understand the physics of rogue waves have motivated the study of mechanisms that produce rare, extreme events, often through analogous optical setups. As many studies have reported nonlinear generation mechanisms, recent work has explored whether optical rogue events can be produced in linear systems. Here we report the observation of linear rogue events with tunable height, generated from light imprinted with a non-Markovian wavefront. Moreover, if the non-Markovian wavefront is allowed to propagate through a nonlinear medium, extraordinarily long-tailed intensity distributions are produced, which do not conform to the statistics previously observed in optical rogue wave experiments (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:864 / 871
页数:8
相关论文
共 50 条
[31]   Experimental characterization of a non-Markovian quantum process [J].
Goswami, K. ;
Giarmatzi, C. ;
Monterola, C. ;
Shrapnel, S. ;
Romero, J. ;
Costa, F. .
PHYSICAL REVIEW A, 2021, 104 (02)
[32]   Non-Markovian Quantum Trajectories: An Exact Result [J].
Bassi, Angelo ;
Ferialdi, Luca .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[33]   Non-Markovian effect on remote state preparation [J].
Xu, Zhen-Yu ;
Liu, Chen ;
Luo, Shunlong ;
Zhu, Shiqun .
ANNALS OF PHYSICS, 2015, 356 :29-36
[34]   Nonlocal non-Markovian effects in dephasing environments [J].
Xie Dong ;
Wang An-Min .
CHINESE PHYSICS B, 2014, 23 (04)
[35]   Entanglement Evolution and Transfer in Non-Markovian Reservoirs [J].
Han, Feng .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (02) :395-401
[36]   Quantum cryptography over non-Markovian channels [J].
Thapliyal, Kishore ;
Pathak, Anirban ;
Banerjee, Subhashish .
QUANTUM INFORMATION PROCESSING, 2017, 16 (05)
[37]   NON-MARKOVIAN QUANTUM TRAJECTORY UNRAVELLINGS OF ENTANGLEMENT [J].
Corn, Brittany ;
Jing, Jun ;
Yu, Ting .
QUANTUM INFORMATION & COMPUTATION, 2016, 16 (5-6) :483-497
[38]   Markovian versus non-Markovian stochastic quantization of a complex-action model [J].
Krein, G. ;
Menezes, G. ;
Svaiter, N. F. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (06)
[39]   Supercorrelated decay in a quasiperiodic nonlinear waveguide: From Markovian to non-Markovian transitions [J].
Li, Jia-Qi ;
Zhou, Tian-Yu ;
Wang, Xin .
PHYSICAL REVIEW A, 2025, 112 (01)
[40]   Optomechanical state transfer in the presence of non-Markovian environments [J].
Cheng, Jiong ;
Liang, Xian-Ting ;
Zhang, Wen-Zhao ;
Duan, Xiangmei .
OPTICS COMMUNICATIONS, 2019, 430 :385-390