Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer

被引:26
|
作者
Li, Jing [1 ]
Yang, Fan [1 ]
机构
[1] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Task allocation; Multi-robot; Gray wolf algorithm; Kent chaos; MTSP problem; ALGORITHM;
D O I
10.1007/s12652-020-02224-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-robot task allocation (MRTA) is the basis of a multi-robot system to perform tasks automatically, which directly affects the execution efficiency of the whole system. A distributed cooperative task allocation strategy based on the algorithm of the improved Grey Wolf Optimizer (IGWO) was proposed to quickly and effectively plan the cooperative task path with a large number of working task points. The MRTA problem was transformed into multiple traveling salesman problems (MTSPs), and the task target points were clustered by the K-means clustering algorithm and divided into several traveling salesman problems (TSPs). The Grey Wolf Optimizer (GWO) was improved by the Kent chaotic algorithm to initialize the population and enhance the diversity of the population. Furthermore, an adaptive adjustment strategy of the control parameter (a) over right arrow was proposed to balance exploration and exploitation. The individual speed and position updates in PSO were introduced to enable the gray wolf individual to preserve its optimal location information and accelerate the convergence speed. The IGWO was used to solve the optimal solutions to multiple TSP problems. Finally, the optimal solution space was integrated to get the optimal solution of MTSP, and 16 international classical test functions simulated the IGWO. The results showed that the IGWO algorithm has faster convergence speed and higher accuracy. The task allocation strategy is reasonable, with roughly equal path length, small planning cost, fast convergence speed, and excellent stability.
引用
收藏
页码:6319 / 6335
页数:17
相关论文
共 50 条
  • [1] Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer
    Jing Li
    Fan Yang
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 6319 - 6335
  • [2] Multi-Robot Exploration Based on Multi-Objective Grey Wolf Optimizer
    Kamalova, Albina
    Navruzov, Sergey
    Qian, Dianwei
    Lee, Suk Gyu
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [3] Multi-Objective Grey Wolf Optimizer Based on Improved Head Wolf Selection Strategy
    Zhang, Zhaojun
    Xu, Tao
    Zou, Kuansheng
    Tan, Simeng
    Sun, Zhenzhen
    2024 43RD CHINESE CONTROL CONFERENCE, CCC 2024, 2024, : 1922 - 1927
  • [4] AN IMPROVED MULTI-OBJECTIVE GREY WOLF OPTIMIZER FOR DEPENDENT TASK SCHEDULING IN EDGE COMPUTING
    Jiang, Kaihua
    Ni, Hong
    Han, Rui
    Wang, Xu
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (06): : 2289 - 2304
  • [5] Improved dynamic grey wolf optimizer
    Zhang, Xiaoqing
    Zhang, Yuye
    Ming, Zhengfeng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (06) : 877 - 890
  • [6] Consensus-Based ADMM for Task Assignment in Multi-robot Teams
    Haksar, Ravi N.
    Shorinwa, Olaoluwa
    Washington, Patrick
    Schwager, Mac
    ROBOTICS RESEARCH: THE 19TH INTERNATIONAL SYMPOSIUM ISRR, 2022, 20 : 35 - 51
  • [7] FGMTS: Fractional grey wolf optimizer for multi-objective task scheduling strategy in cloud computing
    Sreenu, Karnam
    Malempati, Sreelatha
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (01) : 831 - 844
  • [8] An Improved Binary Grey Wolf Optimizer for Dependent Task Scheduling in Edge Computing
    Jiang, Kaihua
    Ni, Hong
    Sun, Peng
    Han, Rui
    2019 21ST INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): ICT FOR 4TH INDUSTRIAL REVOLUTION, 2019, : 182 - 186
  • [9] An Improved Grey Wolf Optimization with Multi-Strategy Ensemble for Robot Path Planning
    Dong, Lin
    Yuan, Xianfeng
    Yan, Bingshuo
    Song, Yong
    Xu, Qingyang
    Yang, Xiongyan
    SENSORS, 2022, 22 (18)
  • [10] Improved Grey Wolf Optimizer Based on Opposition-Based Learning
    Gupta, Shubham
    Deep, Kusum
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 327 - 338