Effect of the graphite nanoplatelet size on the mechanical, thermal, and electrical properties of polypropylene/exfoliated graphite nanocomposites

被引:47
作者
Kuvardina, E. V. [1 ]
Novokshonova, L. A. [1 ]
Lomakin, S. M. [2 ]
Timan, S. A. [1 ]
Tchmutin, I. A. [3 ]
机构
[1] Russian Acad Sci, Semenov Inst Chem Phys, Moscow 119991, Russia
[2] Emanuel Inst Biochem Phys, Moscow 119334, Russia
[3] Open Joint Stock Co Ind Pk Slava, Moscow 117246, Russia
关键词
conducting polymers; mechanical properties; polyolefins; structure-property relations; FUNCTIONALIZED GRAPHENE; CARBON; COMPOSITES; STRESS; PHASE; FIELD; OXIDE;
D O I
10.1002/app.38237
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polypropylene (PP)/exfoliated graphite nanoplatelet (xGnP) nanocomposites with various intrinsic aspect ratios of graphite nanoplatelets (GnPs; large and small in diameter) were prepared by a melt-mixing procedure. Transmission electron microscopy showed that all types of xGnP were well-dispersed in the polymer matrix. The effects of the dimensions and loading of the xGnPs on the morphology, mechanical reinforcement, and electrical properties of PP/xGnP were studied. A differential scanning calorimetry study of the PP/xGnP morphology indicated that all types of xGnP additives were heterogeneous nucleation sites for PP crystallization. Tensile testing, DMA, and thermogravimetric analysis of PP/xGnPs with different types of GnP additives showed enhancements in their mechanical properties, heat resistance, and thermal stability compared to plain PP. We also found a significant increase in the conductivity of PP/xGnP. The PP/xGnP with a large diameter of GnPs demonstrated the lowest percolation threshold, equal to 4 vol % of the xGnP loading. The mechanical properties were estimated by means of micromechanical modeling. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
引用
收藏
页码:1417 / 1424
页数:8
相关论文
共 32 条
[1]   ANOMALOUS BOND OF MONOLAYER GRAPHITE ON TRANSITION-METAL CARBIDE SURFACES [J].
AIZAWA, T ;
SOUDA, R ;
OTANI, S ;
ISHIZAWA, Y ;
OSHIMA, C .
PHYSICAL REVIEW LETTERS, 1990, 64 (07) :768-771
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites [J].
Ansari, Seema ;
Giannelis, Emmanuel P. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (09) :888-897
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Calculating the rigidity of a composite with allowance for flexural deformations of the filler [J].
Berlin, Al. Al. ;
Oshmyan, V. G. ;
Patlazhan, S. A. ;
Timan, S. A. ;
Shamaev, M. Yu. ;
Khokhlov, A. R. .
POLYMER SCIENCE SERIES A, 2006, 48 (02) :198-206
[6]  
Christensen R. M., 1979, Mechanics of composite materials
[7]  
EIZENBERG M, 1979, SURF SCI, V82, P228, DOI 10.1016/0039-6028(79)90330-3
[8]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396
[9]  
Fukushima H., 2003, Graphite nanoreinforcements in polymer nanocomposites
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191