Biomimetic Dendrite-Free Multivalent Metal Batteries

被引:54
|
作者
Zhang, Zhijia [1 ,2 ]
Yang, Xu [2 ]
Li, Peng [3 ]
Wang, Yao [1 ]
Zhao, Xin [1 ]
Safaei, Javad [2 ]
Tian, Hao [2 ]
Zhou, Dong [1 ]
Li, Baohua [1 ]
Kang, Feiyu [1 ]
Wang, Guoxiu [2 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
[3] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Nanjing 210006, Peoples R China
基金
澳大利亚研究理事会;
关键词
biomimetic scaffolds; dendrite growth; fractal structures; interfacial side reactions; multivalent metal batteries; LONG-LIFE; SALT ELECTROLYTE; ION; VOLTAGE; ANODE; CAPACITY; LAYER;
D O I
10.1002/adma.202206970
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable multivalent metal (e.g., zinc (Zn) and aluminum (Al)) batteries are ideal choices for large-scale energy storage owing to their intrinsic low cost and safety. However, the poor compatibility between metallic anodes and electrolytes strongly hampers their practical applications. Herein, it is demonstrated that confining multivalent metals in a biomimetic scaffold (Bio-scaffold) can achieve highly efficient multivalent metal plating/stripping. This Bio-scaffold is well-tailored through the synergy of a parallel-aligned array of fractal copper branches and a CaTiO3 (CTO)-based coating layer. By virtue of this design strategy, the as-developed Bio-scaffold-based Zn- and Al-metal anodes exhibited dendrite-free morphologies with high reversibility and long lifespan, as well as excellent performance for Zn and Al full batteries. Theoretical modeling and experimental investigations reveal that the fractal copper array not only facilitates multivalent ion diffusion and electrolyte wetting but also effectively reduces the local current densities during cycling; Meanwhile, the CTO-based coating layer effectively blocks interfacial side reactions and enables a homogeneous ionic flux. This work opens a new avenue for developing multivalent metal batteries.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Ether-containing polycarbonate-based solid polymer electrolytes for Dendrite-Free Lithium metal batteries
    Chen, Yubing
    Chen, Guangping
    Niu, Chaoqun
    Shang, Wenyan
    Yu, Rentong
    Fang, Chenxin
    Ouyang, Ping
    Du, Jie
    POLYMER, 2021, 223 (223)
  • [32] Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries
    Xie, Yangyang
    Hu, Junxian
    Han, Zexun
    Wang, Taosheng
    Zheng, Jingqiang
    Gan, Lang
    Lai, Yanqing
    Zhang, Zhian
    ENERGY STORAGE MATERIALS, 2020, 30 : 1 - 8
  • [33] Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries
    Pokharel, Jyotshna
    Cresce, Arthur
    Pant, Bharat
    Yang, Moon Young
    Gurung, Ashim
    He, Wei
    Baniya, Abiral
    Lamsal, Buddhi Sagar
    Yang, Zhongjiu
    Gent, Stephen
    Xian, Xiaojun
    Cao, Ye
    Goddard, William A., III
    Xu, Kang
    Zhou, Yue
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [34] Covalent Triazine Based Frameworks with Donor-Donor-π-Acceptor Structures for Dendrite-Free Lithium Metal Batteries
    Lu, Xiao-Meng
    Wang, Haichao
    Sun, Yiwen
    Xu, Yi
    Sun, Weiwei
    Wu, Yang
    Zhang, Yifan
    Yang, Chao
    Wang, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (41)
  • [35] Self-leveling electrolyte enabled dendrite-free lithium deposition for safer and stable lithium metal batteries
    Xu, Lingyun
    Yang, Jingbo
    Huang, Moujie
    Pi, Liu
    Du, Kaifa
    Wang, Dihua
    Lin, An
    Peng, Chuang
    CHEMICAL ENGINEERING JOURNAL, 2021, 419
  • [36] In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries
    Kim, Yonghwan
    Kim, Dohyeong
    Bae, Minjun
    Chang, Yujin
    An, Won Young
    Hong, Hwichan
    Hwang, Seon Jae
    Kim, Dongwan
    Lee, Jeongyeon
    Piao, Yuanzhe
    ENERGY & ENVIRONMENTAL MATERIALS, 2025,
  • [37] Understanding and Mastering Multiphysical Fields Toward Dendrite-Free Aqueous Zinc Batteries
    Du, Dayue
    Zeng, Li
    Lan, Nan
    Luo, Dan
    Li, Xiaolong
    He, Hanna
    Zhang, Chuhong
    ADVANCED ENERGY MATERIALS, 2024, 14 (47)
  • [38] Anion Immobilization Enabled by Cation-Selective Separators for Dendrite-Free Lithium Metal Batteries
    Zhao, Qing
    Zhou, Rongkun
    Wang, Chengjie
    Kang, Jianxin
    Zhang, Qianqian
    Liu, Jingbing
    Jin, Yuhong
    Wang, Hao
    Zheng, Zilong
    Guo, Lin
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
  • [39] A strategy of selective and dendrite-free lithium deposition for lithium batteries
    Xiang, Jingwei
    Zhao, Ying
    Yuan, Lixia
    Chen, Chaoji
    Shen, Yue
    Hu, Fei
    Hao, Zhangxiang
    Liu, Jing
    Xu, Baixiang
    Huang, Yunhui
    NANO ENERGY, 2017, 42 : 262 - 268
  • [40] Regulating Lithium Ion Transport by a Highly Stretchable Interface for Dendrite-Free Lithium Metal Batteries
    Zhao, Peiyu
    Kuang, Guoqing
    Qiao, Rui
    Liu, Kai
    Ajdari, Farshad Boorboor
    Sun, Kun
    Bao, Chonggao
    Salavati-Niasari, Masoud
    Song, Jiangxuan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (08) : 10141 - 10148