共 37 条
Hydrogen circulation system model predictive control for polymer electrolyte membrane fuel cell-based electric vehicle application
被引:82
作者:
He, Hongwen
[1
]
Quan, Shengwei
[1
]
Wang, Ya-Xiong
[1
,2
]
机构:
[1] Beijing Inst Technol, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
[2] Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
基金:
国家重点研发计划;
关键词:
Polymer electrolyte membrane fuel cell (PEMFC);
Hydrogen circulation system;
Switched model predictive control (MPC) scheme;
Fuel cell electric vehicles;
RECIRCULATION SYSTEM;
EXCESS RATIO;
POWER-SYSTEM;
MPC SCHEME;
PRESSURE;
PEMFC;
CHALLENGES;
STRATEGIES;
STARVATION;
SELENIUM;
D O I:
10.1016/j.ijhydene.2019.12.147
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Polymer electrolyte membrane fuel cell (PEMFC) is one of the promising solutions overcoming future energy crisis and environment pollution in the automotive industry. However, PEMFC is vulnerable to the circulation of hydrogen mass flow rate and pressure, which may cause the degradation of the PEMFC's anode components and reduction of output performance over time. Thus, the control of the hydrogen supply system draws attention currently and is critical for the durability and stability of the PEMFC system. In this study, a model predictive control (MPC) approach for hydrogen circulation system is developed to regulate the hydrogen flow circulating. A model of the hydrogen supply system that contains a flow control valve, a supply manifold, a return manifold and a hydrogen circulating pump is firstly developed to describe the behavior of the hydrogen mass flow dynamics in the PEMFC. Subsequently, a hydrogen circulating pump MPC scheme is designed based on the piecewise linearized model of hydrogen circulation as well as the switched MPC controllers. By predicting the pressure of the return manifold and the angle velocity of the pump, the proposed MPC approach can manipulate the hydrogen circulating pump to achieve efficient and stable operation of the PEMFC. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20382 / 20390
页数:9
相关论文