HOLDER ESTIMATES AND LARGE TIME BEHAVIOR FOR A NONLOCAL DOUBLY NONLINEAR EVOLUTION

被引:10
作者
Hynd, Ryan [1 ]
Lindgren, Erik [2 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
来源
ANALYSIS & PDE | 2016年 / 9卷 / 06期
基金
瑞典研究理事会;
关键词
doubly nonlinear evolution; Holder estimates; eigenvalue problem; fractional p-Laplacian; nonlocal equation; FRACTIONAL P-LAPLACIAN; PARABOLIC EQUATIONS; BOUNDED DOMAINS; ASYMPTOTIC-BEHAVIOR; DIFFUSION EQUATIONS; EIGENVALUE PROBLEMS; VISCOSITY SOLUTIONS; INEQUALITIES; CONTINUITY; GRADIENT;
D O I
10.2140/apde.2016.9.1447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear and nonlocal PDE vertical bar nu(t)vertical bar(p-2) nu(t) + (-Delta p)(s)nu = 0, where (-Delta(p))(s) v(x,t) = 2 P.V. integral(Rn) vertical bar nu(x,t) - nu(x+y,t)vertical bar(p-2)nu(x,t)-nu(x,y,t))/vertical bar y vertical bar(n+sp) dy; has the interesting feature that an associated Rayleigh quotient is nonincreasing in time along solutions. We prove the existence of a weak solution of the corresponding initial value problem which is also unique as a viscosity solution. Moreover, we provide Hlder estimates for viscosity solutions and relate the asymptotic behavior of solutions to the eigenvalue problem for the fractional p-Laplacian.
引用
收藏
页码:1447 / 1482
页数:36
相关论文
共 48 条
[1]   Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime [J].
Agueh, Martial ;
Blanchet, Adrien ;
Carrillo, Jose A. .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (01) :59-84
[2]  
Ambrosio L., 2008, LECT MATH
[3]  
[Anonymous], 1988, Rev. Mat. Iberoam, DOI DOI 10.4171/RMI/77
[4]  
[Anonymous], REV MAT IBE IN PRESS
[5]   Long-time asymptotics for fully nonlinear homogeneous parabolic equations [J].
Armstrong, Scott N. ;
Trokhimtchouk, Maxim .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 38 (3-4) :521-540
[6]   LARGE TIME BEHAVIOR OF SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN BOUNDED DOMAINS [J].
ARONSON, DG ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (03) :378-412
[7]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[8]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[9]  
Brasco L., 2017, ADV MATH, V304, p[2, 300]
[10]  
Brasco L., 2015, ADV CALC VAR