Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images

被引:24
|
作者
Elgafi, Mahmoud [1 ]
Sharafeldeen, Ahmed [2 ]
Elnakib, Ahmed [2 ]
Elgarayhi, Ahmed [1 ]
Alghamdi, Norah S. [3 ]
Sallah, Mohammed [1 ,4 ]
El-Baz, Ayman [2 ]
机构
[1] Mansoura Univ, Fac Sci, Phys Dept, Appl Math Phys Res Grp, Mansoura 35516, Egypt
[2] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[3] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, Riyadh 11671, Saudi Arabia
[4] Higher Inst Engn & Technol, New Damietta 34517, Egypt
关键词
diabetic retinopathy; neural networks; thickness; OCT; reflectivity; classification; AIDED DIAGNOSIS SYSTEM;
D O I
10.3390/s22207833
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Diabetic retinopathy (DR) is a major health problem that can lead to vision loss if not treated early. In this study, a three-step system for DR detection utilizing optical coherence tomography (OCT) is presented. First, the proposed system segments the retinal layers from the input OCT images. Second, 3D features are extracted from each retinal layer that include the first-order reflectivity and the 3D thickness of the individual OCT layers. Finally, backpropagation neural networks are used to classify OCT images. Experimental studies on 188 cases confirm the advantages of the proposed system over related methods, achieving an accuracy of 96.81%, using the leave-one-subject-out (LOSO) cross-validation. These outcomes show the potential of the suggested method for DR detection using OCT images.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Diabetic Retinopathy Detection Using 3D OCT Features
    Sharafeldeen, Ahmed
    Elgafi, Mahmoud
    Elnakib, Ahmed
    Mahmoud, Ali
    Elgarayhi, Ahmed
    Alghamdi, Norah S.
    Sallah, Mohammed
    El-Baz, Ayman
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [2] Automated detection of diabetic retinopathy in fundus images using fused features
    Bibi, Iqra
    Mir, Junaid
    Raja, Gulistan
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (04) : 1253 - 1264
  • [3] Detection of diabetic retinopathy using OCT image
    Devi, M. Sakthi sree
    Ramkumar, S.
    Kumar, S. Vinuraj
    Sasi, G.
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 185 - 190
  • [4] Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images
    Arulmozhivarman Pachiyappan
    Undurti N Das
    Tatavarti VSP Murthy
    Rao Tatavarti
    Lipids in Health and Disease, 11
  • [5] Automated diagnosis of diabetic retinopathy and glaucoma using fundus and OCT images
    Pachiyappan, Arulmozhivarman
    Das, Undurti N.
    Murthy, Tatavarti V. S. P.
    Tatavarti, Rao
    LIPIDS IN HEALTH AND DISEASE, 2012, 11
  • [6] Diabetic Retinopathy Detection from Fundus Images Using Machine Learning Techniques : A Review
    Kadan, Anoop Balakrishnan
    Subbian, Perumal Sankar
    WIRELESS PERSONAL COMMUNICATIONS, 2021, 121 (03) : 2199 - 2212
  • [7] Automated detection of diabetic retinopathy in fundus images using fused features
    Iqra Bibi
    Junaid Mir
    Gulistan Raja
    Physical and Engineering Sciences in Medicine, 2020, 43 : 1253 - 1264
  • [8] A Faster RCNN-Based Diabetic Retinopathy Detection Method Using Fused Features From Retina Images
    Nur-A-Alam, Md.
    Nasir, Md. Mostofa Kamal
    Ahsan, Mominul
    Based, Md. Abdul
    Haider, Julfikar
    Palani, Sivaprakasam
    IEEE ACCESS, 2023, 11 : 124331 - 124349
  • [9] Detection and Classification of Diabetic Retinopathy using Retinal Images
    Verma, Kanika
    Deep, Prakash
    Ramakrishnan, A. G.
    2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [10] Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features
    Butt, Muhammad Mohsin
    Iskandar, D. N. F. Awang
    Abdelhamid, Sherif E.
    Latif, Ghazanfar
    Alghazo, Runna
    DIAGNOSTICS, 2022, 12 (07)