Positive Solutions of Complementary Lidstone Boundary Value Problems

被引:0
作者
Agarwal, Ravi P. [1 ,2 ]
Wong, Patricia J. Y. [3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Derivative dependence; positive solutions; complementary Lidstone boundary value problems; SHARP ERROR-BOUNDS; DERIVATIVES; INTERPOLATION; POLYNOMIALS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following complementary Lidstone boundary value problem (-1)(m) y((2m+1)) (l) = F(l, y(l), y'(l)), l is an element of [0, 1] y(0) = 0, y ((2k-1))(0) = y((2k-1))(1) = 0, 1 <= k <= m. The nonlinear term F depends on y' and this derivative dependence is seldom investigated in the literature. Using a variety of fixed point theorems, we establish the existence of one or more positive solutions for the boundary value problem. Examples are also included to illustrate the results obtained.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 39 条
[11]   ASYMPTOTIC ESTIMATES OF THE EIGENVALUES OF A 6TH-ORDER BOUNDARY-VALUE PROBLEM OBTAINED BY USING GLOBAL PHASE-INTEGRAL METHODS [J].
BALDWIN, P .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 322 (1566) :281-305
[12]  
Boas RP., 1943, DUKE MATH J, V10, P239, DOI [10.1215/S0012-7094-43-01021-X, DOI 10.1215/S0012-7094-43-01021-X]
[13]  
Boas RP, 1941, B AM MATH SOC, V47, P750, DOI DOI 10.1090/S0002-9904-1941-07552-X
[14]   FINITE-DIFFERENCE METHODS FOR 12TH-ORDER BOUNDARY-VALUE-PROBLEMS [J].
BOUTAYEB, A ;
TWIZELL, EH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 35 (1-3) :133-138
[15]   An algebraic approach to Lidstone polynomials [J].
Costabile, F. A. ;
Serpe, A. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (04) :387-390
[16]   Lidstone approximation on the triangle [J].
Costabile, FA ;
Dell'Accio, F .
APPLIED NUMERICAL MATHEMATICS, 2005, 52 (04) :339-361
[17]   Explicit polynomial expansions of regular real functions by means of even order Bernoulli polynomials and boundary values [J].
Costabile, FA ;
Dell'Accio, F ;
Luceri, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) :77-90
[18]   General Lidstone problems: Multiplicity and symmetry of solutions [J].
Davis, JM ;
Henderson, J ;
Wong, PJY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :527-548
[19]   Triple positive solutions and dependence on higher order derivatives [J].
Davis, JM ;
Eloe, PW ;
Henderson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (02) :710-720
[20]  
Davis P. J., 1961, Interpolation and Approximation