Positive Solutions of Complementary Lidstone Boundary Value Problems

被引:0
作者
Agarwal, Ravi P. [1 ,2 ]
Wong, Patricia J. Y. [3 ]
机构
[1] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Derivative dependence; positive solutions; complementary Lidstone boundary value problems; SHARP ERROR-BOUNDS; DERIVATIVES; INTERPOLATION; POLYNOMIALS; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following complementary Lidstone boundary value problem (-1)(m) y((2m+1)) (l) = F(l, y(l), y'(l)), l is an element of [0, 1] y(0) = 0, y ((2k-1))(0) = y((2k-1))(1) = 0, 1 <= k <= m. The nonlinear term F depends on y' and this derivative dependence is seldom investigated in the literature. Using a variety of fixed point theorems, we establish the existence of one or more positive solutions for the boundary value problem. Examples are also included to illustrate the results obtained.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 39 条
[1]  
AGARWAL R. P., 1993, Error Inequalities in Polynomial Interpolation and Their Applications
[2]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[3]  
Agarwal R.P., 2009, J INEQUAL APPL, V2009, P1
[4]   Piecewise complementary Lidstone interpolation and error inequalities [J].
Agarwal, Ravi P. ;
Wong, Patricia J. Y. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) :2543-2561
[5]   EXPLICIT ERROR-BOUNDS FOR THE DERIVATIVES OF PIECEWISE-LIDSTONE INTERPOLATION [J].
AGARWAL, RP ;
WONG, PJY .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 58 (01) :67-81
[6]   QUASI-LINEARIZATION AND APPROXIMATE QUASI-LINEARIZATION FOR LIDSTONE BOUNDARY-VALUE-PROBLEMS [J].
AGARWAL, RP ;
WONG, PJY .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 42 (1-2) :99-116
[7]   LIDSTONE POLYNOMIALS AND BOUNDARY-VALUE PROBLEMS [J].
AGARWAL, RP ;
WONG, PJY .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 17 (10) :1397-1421
[8]  
AGARWAL RP, 1998, MG TXB PUR APPL MATH, V212, P1
[9]  
Agarwall RP., 1982, J COMPUT APPL MATH, V8, P145, DOI DOI 10.1016/0771-050X(82)90035-3
[10]  
Baldwin P., 1987, Applicable Analysis, V24, P117, DOI 10.1080/00036818708839658