On the nonexistence of global solutions for wave equations with double damping terms and nonlinear memory

被引:0
作者
Berbiche, Mohamed [1 ]
Terchi, Messaouda [1 ]
机构
[1] Univ Biskra, Dept Math, POB 145, Biskra 07000, Algeria
关键词
weak solutions; blow-up; critical exponent; CRITICAL EXPONENT; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider the Cauchy problem for a wave equations with frictional and displacement dependent damping terms with nonlinear memory in multi-dimensional space R-n, n >= 1, we will prove the existence and uniqueness of the local solution and the nonexistence of global weak solutions theorems for any dimension space.
引用
收藏
页码:161 / 178
页数:18
相关论文
共 23 条
[1]  
ADAMS RA, 1975, PURE APPL MATH, V65
[2]  
Berbiche M., 2013, Commun. Math. Anal, V14, P72
[3]   Asymptotically self-similar global solutions of a damped wave equation with nonlinear memory [J].
Berbiche, Mohamed .
ASYMPTOTIC ANALYSIS, 2013, 82 (3-4) :315-330
[4]   An equation whose Fujita critical exponent is not given by scaling [J].
Cazenave, Thierry ;
Dickstein, Flavio ;
Weissler, Fred B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) :862-874
[5]  
Debnath L., 2016, INTEGRAL TRANSFORMS, DOI [DOI 10.1201/9781420010916, 10.1201/9781420010916]
[6]   Local existence and uniqueness for a semilinear accretive wave equation [J].
Faour, H. ;
Fino, A. Z. ;
Jazar, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :534-539
[7]   Critical exponent for damped wave equations with nonlinear memory [J].
Fino, Ahmad Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5495-5505
[8]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[9]   Decay estimates of solutions for dissipative wave equations in RN with lower power nonlinearities [J].
Ikehata, R ;
Miyaoka, Y ;
Nakatake, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (02) :365-373
[10]  
Katayama S., 2000, MATH JPN, V50, P459