On 3-uniform hypergraphs without a cycle of a given length
被引:38
作者:
Furedi, Zoltan
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Furedi, Zoltan
[1
]
Ozkahya, Lale
论文数: 0引用数: 0
h-index: 0
机构:
Hacettepe Univ, Dept Comp Engn, Ankara, TurkeyHungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
Ozkahya, Lale
[2
]
机构:
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Hacettepe Univ, Dept Comp Engn, Ankara, Turkey
We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length l. In particular we prove that the upper bound for C2k+1-free hypergraphs is of the order O(k(2)n(1+1/k)), improving the upper bound of Gyori and Lemons (2012) by a factor of Theta (k(2)). Similar bounds are shown for linear hypergraphs. (C) 2016 Elsevier B.V. All rights reserved.