On 3-uniform hypergraphs without a cycle of a given length

被引:38
作者
Furedi, Zoltan [1 ]
Ozkahya, Lale [2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
[2] Hacettepe Univ, Dept Comp Engn, Ankara, Turkey
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Turan number; Triangles; Cycles; Extremal graphs; Triple systems; GRAPHS; NUMBER;
D O I
10.1016/j.dam.2016.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the maximum number of hyperedges in a 3-uniform hypergraph on n vertices that does not contain a Berge cycle of a given length l. In particular we prove that the upper bound for C2k+1-free hypergraphs is of the order O(k(2)n(1+1/k)), improving the upper bound of Gyori and Lemons (2012) by a factor of Theta (k(2)). Similar bounds are shown for linear hypergraphs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:582 / 588
页数:7
相关论文
共 6 条
[1]   The Maximum Number of Triangles in C2k+1-Free Graphs [J].
Gyori, Ervin ;
Li, Hao .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) :187-191
[2]   Hypergraphs with No Cycle of a Given Length [J].
Gyori, Ervin ;
Lemons, Nathan .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) :193-201
[3]   On the number of pentagons in triangle-free graphs [J].
Hatami, Hamed ;
Hladky, Jan ;
Kral, Daniel ;
Norine, Serguei ;
Razborov, Alexander .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (03) :722-732
[4]  
Kovari T., 1954, C MATH, V3, P50
[5]   A NOTE ON THE TURAN FUNCTION OF EVEN CYCLES [J].
Pikhurko, Oleg .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) :3687-3692
[6]   On arithmetic progressions of cycle lengths in graphs [J].
Verstraëte, J .
COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (04) :369-373