Large-Scale Whale Call Classification Using Deep Convolutional Neural Network Architectures

被引:0
|
作者
Wang, Dezhi [1 ]
Zhang, Lilun [1 ]
Lu, Zengquan [1 ]
Xu, Kele [2 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sch Comp, Changsha, Hunan, Peoples R China
基金
国家重点研发计划;
关键词
whale call classification; convolutional neural network; deep learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As the rapid development of deep learning techniques, extensive interest has been taken into the applications of deep learning methods on challenging problems of different domains. In view of the recent success of convolutional neural network (CNN) in various tasks of audio analysis, a comparative performance study of different the-state-of-the-art CNN architectures on a large-scale whale-call classification task is investigated in this paper. On the basis of deep neural network models, distinctive features of whale sub-populations are extracted to obtain higher level abstract representations for the accurate classification, which is significantly superior to the traditional classification approaches using manual features based on expert knowledge. In particular, a large open-source acoustic dataset recorded by audio sensors carried by whales in different locations is employed for performance comparison. Based on the experiments, it is found that the advancement of popular CNN architectures significantly improve the accuracy on the whale call classification task. The accuracy and computational efficiency varies with the change of the CNN architectures. Xception provides the best performance among all four CNN architectures while an ensemble of CNN models can produce even better results.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Classification of Metaphase Chromosomes Using Deep Convolutional Neural Network
    Hu, Xi
    Yi, Wenling
    Jiang, Ling
    Wu, Sijia
    Zhang, Yan
    Du, Jianqiang
    Ma, Tianyou
    Wang, Tong
    Wu, Xiaoming
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (05) : 473 - 484
  • [32] Facial Expression Classification Using Deep Convolutional Neural Network
    Choi, In-kyu
    Ahn, Ha-eun
    Yoo, Jisang
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (01) : 485 - 492
  • [33] Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 732 - 735
  • [34] Mammogram density classification using deep convolutional neural network
    Nithya, R.
    Santhi, B.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (01):
  • [35] Lithological facies classification using deep convolutional neural network
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 174 : 216 - 228
  • [36] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924
  • [37] The skin cancer classification using deep convolutional neural network
    Ulzii-Orshikh Dorj
    Keun-Kwang Lee
    Jae-Young Choi
    Malrey Lee
    Multimedia Tools and Applications, 2018, 77 : 9909 - 9924
  • [38] Large Scale Indexing and Searching Deep Convolutional Neural Network Features
    Amato, Giuseppe
    Debole, Franca
    Falchi, Fabrizio
    Gennaro, Claudio
    Rabitti, Fausto
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2016, 2016, 9829 : 213 - 224
  • [39] Optimization of deep convolutional neural network for large scale image retrieval
    Bai, Cong
    Huang, Ling
    Pan, Xiang
    Zheng, Jianwei
    Chen, Shengyong
    NEUROCOMPUTING, 2018, 303 : 60 - 67
  • [40] Dari Speech Classification Using Deep Convolutional Neural Network
    Dawodi, Mursal
    Baktash, Jawid Ahamd
    Wada, Tomohisa
    Alam, Najwa
    Joya, Mohammad Zarif
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 110 - 113