Large-Scale Whale Call Classification Using Deep Convolutional Neural Network Architectures

被引:0
作者
Wang, Dezhi [1 ]
Zhang, Lilun [1 ]
Lu, Zengquan [1 ]
Xu, Kele [2 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sch Comp, Changsha, Hunan, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC) | 2018年
基金
国家重点研发计划;
关键词
whale call classification; convolutional neural network; deep learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As the rapid development of deep learning techniques, extensive interest has been taken into the applications of deep learning methods on challenging problems of different domains. In view of the recent success of convolutional neural network (CNN) in various tasks of audio analysis, a comparative performance study of different the-state-of-the-art CNN architectures on a large-scale whale-call classification task is investigated in this paper. On the basis of deep neural network models, distinctive features of whale sub-populations are extracted to obtain higher level abstract representations for the accurate classification, which is significantly superior to the traditional classification approaches using manual features based on expert knowledge. In particular, a large open-source acoustic dataset recorded by audio sensors carried by whales in different locations is employed for performance comparison. Based on the experiments, it is found that the advancement of popular CNN architectures significantly improve the accuracy on the whale call classification task. The accuracy and computational efficiency varies with the change of the CNN architectures. Xception provides the best performance among all four CNN architectures while an ensemble of CNN models can produce even better results.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Automatic epileptic signal classification using deep convolutional neural network
    Sinha, Dipali
    Thangavel, K.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (04) : 963 - 973
  • [22] Multimodal Lung Disease Classification using Deep Convolutional Neural Network
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2530 - 2537
  • [23] Automatic classification of pavement crack using deep convolutional neural network
    Li, Baoxian
    Wang, Kelvin C. P.
    Zhang, Allen
    Yang, Enhui
    Wang, Guolong
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2020, 21 (04) : 457 - 463
  • [24] Classification of diabetic retinopathy using ensemble convolutional neural network architectures
    Hendrawan, Kevin Anggakusuma
    Handayani, Ariesanti Tri
    Andayani, Ari
    Ernawati, Titiek
    Gumelar, Agustinus Bimo
    UNIVERSA MEDICINA, 2024, 43 (02) : 188 - 194
  • [25] A Scalable Deep Convolutional LSTM Neural Network for Large-Scale Urban Traffic Flow Prediction using Recurrence Plots
    Essien, Aniekan E.
    Chukwkelu, Godwin
    Giannetti, Cinzia
    2019 IEEE AFRICON, 2019,
  • [26] A novel deep convolutional neural network for arrhythmia classification
    Dang, Hao
    Sun, Muyi
    Zhang, Guanhong
    Zhou, Xiaoguang
    Chang, Qing
    Xu, Xiangdong
    2019 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2019, : 7 - 11
  • [27] Facial Expression Classification Using Deep Convolutional Neural Network
    Choi, In-kyu
    Ahn, Ha-eun
    Yoo, Jisang
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (01) : 485 - 492
  • [28] Classification of Metaphase Chromosomes Using Deep Convolutional Neural Network
    Hu, Xi
    Yi, Wenling
    Jiang, Ling
    Wu, Sijia
    Zhang, Yan
    Du, Jianqiang
    Ma, Tianyou
    Wang, Tong
    Wu, Xiaoming
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (05) : 473 - 484
  • [29] Optimization of deep convolutional neural network for large scale image retrieval
    Bai, Cong
    Huang, Ling
    Pan, Xiang
    Zheng, Jianwei
    Chen, Shengyong
    NEUROCOMPUTING, 2018, 303 : 60 - 67
  • [30] Underwater Fish Species Classification using Convolutional Neural Network and Deep Learning
    Rathi, Dhruv
    Jain, Sushant
    Indu, S.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 344 - 349