Large-Scale Whale Call Classification Using Deep Convolutional Neural Network Architectures

被引:0
|
作者
Wang, Dezhi [1 ]
Zhang, Lilun [1 ]
Lu, Zengquan [1 ]
Xu, Kele [2 ]
机构
[1] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Hunan, Peoples R China
[2] Natl Univ Def Technol, Sch Comp, Changsha, Hunan, Peoples R China
基金
国家重点研发计划;
关键词
whale call classification; convolutional neural network; deep learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As the rapid development of deep learning techniques, extensive interest has been taken into the applications of deep learning methods on challenging problems of different domains. In view of the recent success of convolutional neural network (CNN) in various tasks of audio analysis, a comparative performance study of different the-state-of-the-art CNN architectures on a large-scale whale-call classification task is investigated in this paper. On the basis of deep neural network models, distinctive features of whale sub-populations are extracted to obtain higher level abstract representations for the accurate classification, which is significantly superior to the traditional classification approaches using manual features based on expert knowledge. In particular, a large open-source acoustic dataset recorded by audio sensors carried by whales in different locations is employed for performance comparison. Based on the experiments, it is found that the advancement of popular CNN architectures significantly improve the accuracy on the whale call classification task. The accuracy and computational efficiency varies with the change of the CNN architectures. Xception provides the best performance among all four CNN architectures while an ensemble of CNN models can produce even better results.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Classification of large-scale stellar spectra based on deep convolutional neural network
    Liu, W.
    Zhu, M.
    Dai, C.
    He, D. Y.
    Yao, Jiawen
    Tian, H. F.
    Wang, B. Y.
    Wu, K.
    Zhan, Y.
    Chen, B. -Q.
    Luo, A-Li
    Wang, R.
    Cao, Y.
    Yu, X. C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (04) : 4774 - 4783
  • [2] Large-Scale Text Classification Using Scope-Based Convolutional Neural Network: A Deep Learning Approach
    Wang, Jiaying
    Li, Yaxin
    Shan, Jing
    Bao, Jinling
    Zong, Chuanyu
    Zhao, Liang
    IEEE ACCESS, 2019, 7 : 171548 - 171558
  • [3] A deep convolutional neural network based approach for vehicle classification using large-scale GPS trajectory data
    Dabiri, Sina
    Markovic, Nikola
    Heaslip, Kevin
    Reddy, Chandan K.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 116
  • [4] LARGE-SCALE WEAKLY SUPERVISED AUDIO CLASSIFICATION USING GATED CONVOLUTIONAL NEURAL NETWORK
    Xu, Yong
    Kong, Qiuqiang
    Wang, Wenwu
    Plumbley, Mark D.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 121 - 125
  • [5] Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification
    Xiao, Tianjun
    Zhang, Jiaxing
    Yang, Kuiyuan
    Peng, Yuxin
    Zhang, Zheng
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 177 - 186
  • [6] Large-scale Exploration of Neural Relation Classification Architectures
    Le, Hoang-Quynh
    Can, Duy-Cat
    Vu, Sinh T.
    Dang, Thanh Hai
    Pilehvar, Mohammad Taher
    Collier, Nigel
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 2266 - 2277
  • [7] Multiscale Deep Alternative Neural Network for Large-Scale Video Classification
    Wang, Jinzhuo
    Wang, Wenmin
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (10) : 2578 - 2592
  • [8] Large-scale Video Classification with Convolutional Neural Networks
    Karpathy, Andrej
    Toderici, George
    Shetty, Sanketh
    Leung, Thomas
    Sukthankar, Rahul
    Fei-Fei, Li
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1725 - 1732
  • [9] Automatic Classification of Large-Scale Respiratory Sound Dataset Based on Convolutional Neural Network
    Minami, Koki
    Lu, Huimin
    Kim, Hyoungseop
    Mabu, Shingo
    Hirano, Yasushi
    Kido, Shoji
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 804 - 807
  • [10] Using a Separable Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
    Arnold Loaiza, F.
    Herrera, Jose
    Luis Mantilla, S. C.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION (ICCMS 2018), 2017, : 157 - 161