Screening of small molecules affecting mammalian P-body assembly uncovers links with diverse intracellular processes and organelle physiology

被引:8
作者
Martinez, Javier P. [1 ]
Perez-Vilaro, Gemma [2 ]
Muthukumar, Yazh [3 ]
Scheller, Nicoletta [2 ]
Hirsch, Tatjana [3 ]
Diestel, Randi [3 ]
Steinmetz, Heinrich [4 ]
Jansen, Rolf [4 ]
Frank, Ronald [3 ]
Sasse, Florenz [3 ]
Meyerhans, Andreas [1 ,5 ]
Diez, Juana [2 ]
机构
[1] Univ Pompeu Fabra, Dept Expt & Hlth Sci, Infect Biol Grp, Barcelona, Spain
[2] Univ Pompeu Fabra, Dept Expt & Hlth Sci, Mol Virol Grp, Barcelona, Spain
[3] Helmholtz Ctr Infect Res, Dept Biol Chem, Braunschweig, Germany
[4] Helmholtz Ctr Infect Res, Dept Microbial Drugs, Braunschweig, Germany
[5] ICREA, Barcelona, Spain
关键词
P-body assembly; eIF2; gephyronic acid A; inhibitors; myxobacterial metabolites; processing bodies; stress granules; ARCHANGIUM-GEPHYRA MYXOBACTERIA; COENZYME-A CARBOXYLASE; STRESS GRANULES; BODIES; PROTEINS; MITOCHONDRIA; TRANSLATION; DISRUPTION; MECHANISM; RNAS;
D O I
10.4161/rna.26851
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Processing bodies (P-bodies) are cytoplasmatic mRNP granules containing non-translating mRNAs and proteins from the mRNA decay and silencing machineries. The mechanism of P-body assembly has been typically addressed by depleting P-body components. Here we apply a complementary approach and establish an automated cell-based assay platform to screen for molecules affecting P-body assembly. From a unique library of compounds derived from myxobacteria, 30 specifically inhibited P-body assembly. Gephyronic acid A (GA), a eukaryotic protein synthesis inhibitor, showed the strongest effect. GA also inhibited, under stress conditions, phosphorylation of eIF2 and stress granule formation. Other hits uncovered interesting novel links between P-body assembly, lipid metabolism, and internal organelle physiology. The obtained results provide a chemical toolbox to manipulate P-body assembly and function.
引用
收藏
页码:1661 / 1669
页数:9
相关论文
共 50 条
  • [1] The Dynamics of Mammalian P Body Transport, Assembly, and Disassembly In Vivo
    Aizer, Adva
    Brody, Yehuda
    Ler, Lian Wee
    Sonenberg, Nahum
    Singer, Robert H.
    Shav-Tal, Yaron
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (10) : 4154 - 4166
  • [2] The P Body Protein Dcp1a Is Hyper-phosphorylated during Mitosis
    Aizer, Adva
    Kafri, Pinhas
    Kalo, Alon
    Shav-Tal, Yaron
    [J]. PLOS ONE, 2013, 8 (01):
  • [3] RNA granules: post-transcriptional and epigenetic modulators of gene expression
    Anderson, Paul
    Kedersha, Nancy
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (06) : 430 - 436
  • [4] A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies
    Andrei, MA
    Ingelfinger, D
    Heintzmann, R
    Achsel, T
    Rivera-Pomar, R
    Lührmann, R
    [J]. RNA, 2005, 11 (05) : 717 - 727
  • [5] Building RNA-protein granules: insight from the germline
    Arkov, Alexey L.
    Ramos, Andres
    [J]. TRENDS IN CELL BIOLOGY, 2010, 20 (08) : 482 - 490
  • [6] P bodies, stress granules, and viral life cycles
    Beckham, Carla J.
    Parker, Roy
    [J]. CELL HOST & MICROBE, 2008, 3 (04) : 206 - 212
  • [7] Eukaryotic Stress Granules Are Cleared by Autophagy and Cdc48/VCP Function
    Buchan, J. Ross
    Kolaitis, Regina-Maria
    Taylor, J. Paul
    Parker, Roy
    [J]. CELL, 2013, 153 (07) : 1461 - 1474
  • [8] Sphingolipids mediate formation of mRNA processing bodies during the heat-stress response of Saccharomyces cerevisiae
    Cowart, L. Ashley
    Gandy, Jason L.
    Tholanikunnel, Baby
    Hannun, Yusuf A.
    [J]. BIOCHEMICAL JOURNAL, 2010, 431 : 31 - 38
  • [9] P-Bodies and Stress Granules: Possible Roles in the Control of Translation and mRNA Degradation
    Decker, Carolyn J.
    Parker, Roy
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (09):
  • [10] Myxobacteria: natural pharmaceutical factories
    Diez, Juana
    Martinez, Javier P.
    Mestres, Jordi
    Sasse, Florenz
    Frank, Ronald
    Meyerhans, Andreas
    [J]. MICROBIAL CELL FACTORIES, 2012, 11