GROUND STATE SOLUTIONS FOR SEMILINEAR PROBLEMS WITH A SOBOLEV-HARDY TERM

被引:0
作者
Chen, Xiaoli [1 ]
Chen, Weiyang [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Existence; ground state; critical Hardy-Sobolev exponent; semilinear Dirichlet problem; EQUATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of solutions to the problem -Delta u = gimel u + vertical bar u vertical bar(2)(s)*-(2)(u)/vertical bar y vertical bar(s), x is an element of Omega, u = 0, x is an element of partial derivative Omega, where Omega is a smooth bounded domain in R-N (N >= 3). We show that there is a ground state solution provided that N = 4 and gimel(m) < gimel <gimel(m vertical bar 1), or that N >= 5 and gimel(m) <= gimel < gimel(m+1), where gimel(m) is the m'th eigenvalue of -Delta with Dirichlet boundary conditions.
引用
收藏
页数:12
相关论文
共 16 条
[1]   Positive solutions to a semilinear elliptic equation with a Sobolev-Hardy term [J].
Al-aati, Ali ;
Wang, Chunhua ;
Zhao, Jing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) :4847-4861
[2]  
Aubin T., 1976, J. Diff. Geom., V11, P573
[3]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[4]  
Castorina D, 2008, REND LINCEI-MAT APPL, V19, P189
[5]   Hardy-Sobolev extremals, hyperbolic symmetry and scalar curvature equations [J].
Castorina, D. ;
Fabbri, I. ;
Mancini, G. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1187-1206
[6]  
Fabbri I., 2005, THESIS U STUDI ROMA
[7]  
Grosse H., 1976, FAMILY OPTIMAL CONDI
[8]  
JERISON D, 1987, J DIFFER GEOM, V25, P167
[9]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[10]   Classification of solutions of a critical Hardy-Sobolev operator [J].
Mancini, G. ;
Fabbri, I. ;
Sandeep, K. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) :258-276