Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data

被引:85
作者
Ozdemir, H. [1 ]
Sampson, C. C. [2 ]
de Almeida, G. A. M. [3 ]
Bates, P. D. [2 ]
机构
[1] Istanbul Univ, Phys Geog Div, Dept Geog, TR-34459 Istanbul, Turkey
[2] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[3] Univ Southampton, Fac Engn & Environm, Southampton SO17 1BJ, Hants, England
基金
英国自然环境研究理事会;
关键词
DIFFUSION-WAVE TREATMENT; RASTER-BASED MODEL; SIMULATION; RESOLUTION; RISK; COEFFICIENTS; GENERATION; EQUATION;
D O I
10.5194/hess-17-4015-2013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.
引用
收藏
页码:4015 / 4030
页数:16
相关论文
共 61 条
[1]  
[Anonymous], 2008, LEARNING LESSONS 200
[2]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[3]   Flood risk analyses-how detailed do we need to be? [J].
Apel, H. ;
Aronica, G. T. ;
Kreibich, H. ;
Thieken, A. H. .
NATURAL HAZARDS, 2009, 49 (01) :79-98
[4]   Multilevel model for flood wave propagation in flood-affected areas [J].
Aronica, G ;
Tucciarelli, T ;
Nasello, C .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 1998, 124 (04) :210-217
[5]   Drainage efficiency in urban areas: a case study [J].
Aronica, GT ;
Lanza, LG .
HYDROLOGICAL PROCESSES, 2005, 19 (05) :1105-1119
[6]   Keypoint based autonomous registration of terrestrial laser point-clouds [J].
Barnea, Shahar ;
Filin, Sagi .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (01) :19-35
[7]   A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling [J].
Bates, Paul D. ;
Horritt, Matthew S. ;
Fewtrell, Timothy J. .
JOURNAL OF HYDROLOGY, 2010, 387 (1-2) :33-45
[8]   Internal and external validation of a two-dimensional finite element code for river flood simulations [J].
Bates, PD ;
Stewart, MD ;
Siggers, GB ;
Smith, CN ;
Hervouet, JM ;
Sellin, RHJ .
PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MARITIME AND ENERGY, 1998, 130 (03) :127-141
[9]   A simple raster-based model for flood inundation simulation [J].
Bates, PD ;
De Roo, APJ .
JOURNAL OF HYDROLOGY, 2000, 236 (1-2) :54-77
[10]   Simulation of the St. Francis dam-break flood [J].
Begnudelli, Lorenzo ;
Sanders, Brett F. .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2007, 133 (11) :1200-1212