A finite element method for unstructured grid smoothing

被引:11
作者
Hansen, G
Zardecki, A
Greening, D
Bos, R
机构
[1] Los Alamos Natl Lab, Compuat Sci Methods Grp, Div Appl Phys, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Mat Sci Grp, Div Appl Phys, Los Alamos, NM 87545 USA
关键词
finite elements; Galerkin methods; mesh generation; elliptic smoothing;
D O I
10.1016/j.jcp.2003.09.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The finite element method is applied to grid smoothing for two-dimensional planar geometry. The coordinates of the grid nodes satisfy two quasi-linear elliptic equations in the form of Laplace equations in a Riemann space. By forming a Dirichlet boundary value problem, the proposed method is applicable to both structured and unstructured grids. The Riemannian metric, acting as a driving force in the grid smoothing, is computed iteratively beginning with the metric of the unsmoothed grid. Smoothing is achieved by computing the metric tensor on the dual mesh elements, which incorporates the influence of neighbor elements. Numerical examples of this smoothing methodology, demonstrating the efficiency of the proposed approach, are presented. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:611 / 631
页数:21
相关论文
共 24 条
  • [1] APPLICATION OF BUBNOV GALERKIN FORMULATION TO ORTHOGONAL GRID GENERATION
    ALLIEVI, A
    CALISAL, SM
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) : 163 - 173
  • [2] Becker E. B., 1981, FINITE ELEMENTS INTR, V1
  • [3] Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
    Cai, XC
    Gropp, WD
    Keyes, DE
    Melvin, RG
    Young, DP
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (01) : 246 - 265
  • [4] Carey G. F., 1997, COMPUTATIONAL GRIDS
  • [5] ON THE FOLDING OF NUMERICALLY GENERATED GRIDS - USE OF A REFERENCE GRID
    CASTILLO, JE
    STEINBERG, S
    ROACHE, PJ
    [J]. COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (04): : 471 - 481
  • [6] An object-oriented framework for block preconditioning
    Chow, E
    Heroux, MA
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1998, 24 (02): : 159 - 183
  • [7] Fock V., 1959, THEORY SPACE TIME GR
  • [8] Frankel T.T., 1997, GEOMETRY PHYS INTRO
  • [9] Frey PJ, 2000, MESH GENERATION APPL
  • [10] Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods
    Knupp, P
    Margolin, LG
    Shashkov, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (01) : 93 - 128