Calderon-type inequalities for affine frames

被引:2
作者
Barbieri, Davide [1 ]
Hernandez, Eugenio [1 ]
Mayeli, Azita [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Madrid 28049, Spain
[2] CUNY, Queensborough, NY USA
[3] Grad Ctr, New York, NY USA
基金
欧盟地平线“2020”;
关键词
Frames in LCA groups; Calderon condition for frames; Gabor systems; INVARIANT-SYSTEMS; EXISTENCE;
D O I
10.1016/j.acha.2019.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove sharp upper and lower bounds for generalized Calderon's sums associated to frames on LCA groups generated by affine actions of cocompact subgroup translations and general measurable families of automorphisms. The proof makes use of techniques of analysis on metric spaces, and relies on a counting estimate of lattice points inside metric balls. We will deduce as special cases Calderon-type inequalities for families of expanding automorphisms as well as for LCA-Gabor systems. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:326 / 352
页数:27
相关论文
共 28 条
[1]  
[Anonymous], 2001, COLLECT MATH
[2]  
[Anonymous], 1995, THESIS
[3]  
[Anonymous], 1998, Harmonic analysis on the Heisenberg Group
[4]  
Bownik M, 2003, CONTEMP MATH, V320, P29
[5]   Wavelets for Non-expanding Dilations and the Lattice Counting Estimate [J].
Bownik, Marcin ;
Lemvig, Jakob .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (23) :7264-7291
[6]   The Structure of Translation-Invariant Spaces on Locally Compact Abelian Groups [J].
Bownik, Marcin ;
Ross, Kenneth A. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (04) :849-884
[7]  
Christensen O, 2017, ADV COMPUT MATH, V43, P443, DOI 10.1007/s10444-016-9492-x
[8]   INEQUALITIES OF LITTLEWOOD-PALEY TYPE FOR FRAMES AND WAVELETS [J].
CHUI, CK ;
SHI, XL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :263-277
[9]  
Folland G.B., 1989, HARMONIC ANAL PHASE, V122
[10]   System bandwidth and the existence of generalized shift-invariant frames [J].
Fuehr, Hartmut ;
Lemvig, Jakob .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (02) :563-601