Multilayer microwave integrated quantum circuits for scalable quantum computing

被引:124
作者
Brecht, Teresa [1 ]
Pfaff, Wolfgang [1 ]
Wang, Chen [1 ]
Chu, Yiwen [1 ]
Frunzio, Luigi [1 ]
Devoret, Michel H. [1 ]
Schoelkopf, Robert J. [1 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
来源
NPJ QUANTUM INFORMATION | 2016年 / 2卷
关键词
SUPERCONDUCTING CIRCUITS; ERROR-CORRECTION; RESONATOR; COMPUTATION; SYSTEMS; FILTERS;
D O I
10.1038/npjqi.2016.2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and the long coherence times achievable in three-dimensional circuit quantum electrodynamics. This multilayer microwave integrated quantum circuit platform provides a path towards the realisation of increasingly complex superconducting devices in pursuit of a scalable quantum computer.
引用
收藏
页数:4
相关论文
共 48 条
  • [1] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [2] Bintley D., 2012, SPIE ASTRONOMICAL TE
  • [3] Quantum-information processing with circuit quantum electrodynamics
    Blais, Alexandre
    Gambetta, Jay
    Wallraff, A.
    Schuster, D. I.
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [4] Low-loss micromachined filters for millimeter-wave communication systems
    Blondy, P
    Brown, AR
    Cros, D
    Rebeiz, GM
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (12) : 2283 - 2288
  • [5] Demonstration of superconducting micromachined cavities
    Brecht, T.
    Reagor, M.
    Chu, Y.
    Pfaff, W.
    Wang, C.
    Frunzio, L.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (19)
  • [6] Brown AR, 1999, INT J RF MICROW C E, V9, P326, DOI 10.1002/(SICI)1099-047X(199907)9:4<326::AID-MMCE4>3.0.CO
  • [7] 2-Y
  • [8] Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates
    Bruno, A.
    de Lange, G.
    Asaad, S.
    van der Enden, K. L.
    Langford, N. K.
    DiCarlo, L.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (18)
  • [9] Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor
    Bunyk, Paul I.
    Hoskinson, Emile M.
    Johnson, Mark W.
    Tolkacheva, Elena
    Altomare, Fabio
    Berkley, Andrew J.
    Harris, Richard
    Hilton, Jeremy P.
    Lanting, Trevor
    Przybysz, Anthony J.
    Whittaker, Jed
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2014, 24 (04)
  • [10] Fabrication and characterization of aluminum airbridges for superconducting microwave circuits
    Chen, Zijun
    Megrant, A.
    Kelly, J.
    Barends, R.
    Bochmann, J.
    Chen, Yu
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Mutus, J. Y.
    O'Malley, P. J. J.
    Neill, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (05)