Regularization with randomized SVD for large-scale discrete inverse problems

被引:40
|
作者
Xiang, Hua [1 ]
Zou, Jun [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
MONTE-CARLO ALGORITHMS; L-CURVE; PARAMETER; APPROXIMATION; MATRICES;
D O I
10.1088/0266-5611/29/8/085008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an algorithm for solving the large-scale discrete ill-conditioned linear problems arising from the discretization of linear or nonlinear inverse problems. The algorithm combines some existing regularization techniques and regularization parameter choice rules with a randomized singular value decomposition (SVD), so that only much smaller scale systems are needed to solve, instead of the original large-scale regularized system. The algorithm can directly apply to some existing regularization methods, such as the Tikhonov and truncated SVD methods, with some popular regularization parameter choice rules such as the L-curve, GCV function, quasi-optimality and discrepancy principle. The error of the approximate regularized solution is analyzed and the efficiency of the method is well demonstrated by the numerical examples.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Quasi-Newton methods for large-scale electromagnetic inverse problems
    Haber, E
    INVERSE PROBLEMS, 2005, 21 (01) : 305 - 323
  • [32] Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method
    Florian Bruckner
    Claas Abert
    Gregor Wautischer
    Christian Huber
    Christoph Vogler
    Michael Hinze
    Dieter Suess
    Scientific Reports, 7
  • [33] OPTIMED: iterative optimization for large-scale inverse problems in medical imaging
    Chaari, Lotfi
    Chouzenoux, Emilie
    Pustelnik, Nelly
    Chaux, Caroline
    Moussaoui, Said
    TRAITEMENT DU SIGNAL, 2011, 28 (3-4) : 329 - 373
  • [34] GENERALIZED HYBRID ITERATIVE METHODS FOR LARGE-SCALE BAYESIAN INVERSE PROBLEMS
    Chung, Julianne
    Saibaba, Arvind K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S24 - S46
  • [35] On approximate Bayesian methods for large-scale sparse linear inverse problems
    Altmann, Yoann
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2191 - 2195
  • [36] PARAMETER AND STATE MODEL REDUCTION FOR LARGE-SCALE STATISTICAL INVERSE PROBLEMS
    Lieberman, Chad
    Willcox, Karen
    Ghattas, Omar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05): : 2523 - 2542
  • [37] Symposium on Modern Solvers for Inverse Problems Arising in Large-Scale Applications
    Schuster, Thomas
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1966 - 1966
  • [38] A FRAMEWORK FOR THE ADAPTIVE FINITE ELEMENT SOLUTION OF LARGE-SCALE INVERSE PROBLEMS
    Bangerth, Wolfgang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06): : 2965 - 2989
  • [39] AN EFFICIENT ITERATIVE APPROACH FOR LARGE-SCALE SEPARABLE NONLINEAR INVERSE PROBLEMS
    Chung, Julianne
    Nagy, James G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06): : 4654 - 4674
  • [40] Randomized Sketching for Large-Scale Sparse Ridge Regression Problems
    Iyer, Chander
    Carothers, Christopher
    Drineas, Petros
    PROCEEDINGS OF SCALA 2016: 7TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE-SCALE SYSTEMS, 2016, : 65 - 72