Irreversibility, remanence, and Griffiths phase in Sm0.1Ca0.9MnO3 nanoparticles

被引:19
作者
Markovich, V. [1 ]
Puzniak, R. [2 ]
Fita, I. [2 ,3 ]
Wisniewski, A. [2 ]
Mogilyansky, D. [4 ]
Dolgin, B. [1 ]
Gorodetsky, G. [1 ]
Jung, G. [1 ,2 ]
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[3] Natl Acad Sci, Donetsk Inst Phys & Technol, UA-83114 Donetsk, Ukraine
[4] Ben Gurion Univ Negev, Ilse Katz Inst Nanoscale Sci & Technol, IL-84105 Beer Sheva, Israel
关键词
FINE-PARTICLE SYSTEMS; MAGNETIC-PROPERTIES; SPIN-GLASSES; DOPED MANGANITES; OPEN QUESTIONS; BEHAVIOR; LA0.7SR0.3MNO3; FERROMAGNET; RELAXATION; DYNAMICS;
D O I
10.1063/1.4811445
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic properties of compacted Sm0.1Ca0.9MnO3 particles with 25 and 60 nm average sizes have been investigated. Particular attention has been paid to Griffiths-like features at temperatures above magnetic transition temperature T-C and to the system glassiness at low temperatures. Griffiths-like features in inverse magnetic susceptibility of Sm0.1Ca0.9MnO3 nanoparticles have been linked to the presence of short range ferromagnetically correlated spin clusters above T-C. Glassy behavior has been revealed in temperature and frequency dependence of ac-susceptibility, temperature and field dependence of thermoremanent and isothermoremanent magnetization, and time decay of the remanent magnetization. Experiments revealed the major impact of the glassy component on magnetic properties of investigated nanoparticles. The magnetic relaxation associated with glassy features was found to be much more pronounced in smaller particles, where a formation of collective state in an ensemble of phase separated nanoparticles may take place. Thermomagnetic irreversibility found in Sm0.1Ca0.9MnO3 nanoparticles has been linked to martensitic strain effects. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Supermagnetism [J].
Bedanta, Subhankar ;
Kleemann, Wolfgang .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (01)
[2]   Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves [J].
Benitez, M. J. ;
Petracic, O. ;
Tueysuez, H. ;
Schueth, F. ;
Zabel, H. .
PHYSICAL REVIEW B, 2011, 83 (13)
[3]   Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires [J].
Benitez, M. J. ;
Petracic, O. ;
Salabas, E. L. ;
Radu, F. ;
Tueysuez, H. ;
Schueth, F. ;
Zabel, H. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[4]   SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS [J].
BINDER, K ;
YOUNG, AP .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :801-976
[5]   Non-fermi liquid behavior and Griffiths phase in f-electron compounds [J].
Castro Neto, AH ;
Castilla, G ;
Jones, BA .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3531-3534
[6]   TIME DECAY OF THE REMANENT MAGNETIZATION IN SPIN-GLASSES [J].
CHAMBERLIN, RV ;
MOZURKEWICH, G ;
ORBACH, R .
PHYSICAL REVIEW LETTERS, 1984, 52 (10) :867-870
[7]   Magnetism of manganite nanotubes constituted by assembled nanoparticles [J].
Curiale, J. ;
Sanchez, R. D. ;
Troiani, H. E. ;
Ramos, C. A. ;
Pastoriza, H. ;
Leyva, A. G. ;
Levy, P. .
PHYSICAL REVIEW B, 2007, 75 (22)
[9]  
Dagotto E., 2003, Springer Series in Solid-State Sciences (SSSOL), V136
[10]   STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL [J].
DEALMEIDA, JRL ;
THOULESS, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05) :983-990