What can be learned from a chaotic cancer model?

被引:96
作者
Letellier, C. [1 ]
Denis, F. [2 ]
Aguirre, L. A. [3 ]
机构
[1] Univ Rouen, CORIA, F-76801 St Etienne, France
[2] Ctr Jean Bernard, F-72000 Le Mans, France
[3] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Cancer model; Chaos; Observability; Therapy; STRANGE ATTRACTORS; NONLINEAR DYNAMICS; VACCINE THERAPY; TUMOR; EVOLUTIONARY; RADIOTHERAPY; MICROENVIRONMENT; IMMUNOTHERAPY; ANTIBODY; SAFETY;
D O I
10.1016/j.jtbi.2013.01.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A simple model of three competing cell populations (host, immune and tumor cells) is revisited by using a topological analysis and computing observability coefficients. Our aim is to show that a non-conventional analysis might suggest new trends in understanding the interactions of some tumor cells and their environment. The action of some parameter values on the resulting dynamics is investigated. Our results are related to some clinical features, suggesting that this model thus captures relevant phenomena to cell interactions. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7 / 16
页数:10
相关论文
共 53 条
[11]  
CONILL C, 1990, CANCER-AM CANCER SOC, V65, P1864, DOI 10.1002/1097-0142(19900415)65:8<1864::AID-CNCR2820650832>3.0.CO
[12]  
2-U
[13]   ASYMPTOTIC BEHAVIORS IN THE DYNAMICS OF COMPETING SPECIES [J].
COSTE, J ;
PEYRAUD, J ;
COULLET, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (03) :516-543
[14]  
Coullet P., 1978, JPHYS C, VC5, P25
[15]   ANTIMONOTONICITY - INEVITABLE REVERSALS OF PERIOD-DOUBLING CASCADES [J].
DAWSON, SP ;
GREBOGI, C ;
YORKE, JA ;
KAN, I ;
KOCAK, H .
PHYSICS LETTERS A, 1992, 162 (03) :249-254
[16]   The dynamics of an optimally controlled tumor model: A case study [J].
De Pillis, LG ;
Radunskaya, A .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (11) :1221-1244
[17]   Radiotherapy and chaos theory: The tit and the butterfly ... [J].
Denis, F. ;
Letellier, C. .
CANCER RADIOTHERAPIE, 2012, 16 (5-6) :404-409
[18]   Chaos theory: A fascinating concept for oncologists [J].
Denis, F. ;
Letellier, C. .
CANCER RADIOTHERAPIE, 2012, 16 (03) :230-236
[19]   Monte Carlo role in radiobiological modelling of radiotherapy outcomes [J].
El Naqa, Issam ;
Pater, Piotr ;
Seuntjens, Jan .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (11) :R75-R97
[20]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52