ASYMPTOTIC ANALYSIS OF THE NAVIER-STOKES EQUATIONS IN A CURVED DOMAIN WITH A NON-CHARACTERISTIC BOUNDARY

被引:11
作者
Gie, Gung-Min [1 ,2 ]
Hamouda, Makram [3 ]
Temam, Roger [1 ]
机构
[1] Indiana Univ, Inst Appl Math & Sci Comp, Bloomington, IN 47405 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[3] Univ Carthage, Fac Sci Bizerte, Dept Math, Zarzouna 7021, Bizerte, Tunisia
关键词
Boundary layers; singular perturbations; Navier-Stokes equations; curvilinear coordinates; LAYERS; LIMIT;
D O I
10.3934/nhm.2012.7.741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Navier-Stokes equations of an incompressible fluid in a three dimensional curved domain with permeable walls in the limit of small viscosity. Using a curvilinear coordinate system, adapted to the boundary, we construct a corrector function at order epsilon(j) , j = 0, 1 , where epsilon is the (small) viscosity parameter. This allows us to obtain an asymptotic expansion of the Navier-Stokes solution at order epsilon(j) , j = 0, 1 , for epsilon small . Using the asymptotic expansion, we prove that the Navier-Stokes solutions converge, as the viscosity parameter tends to zero, to the corresponding Euler solution in the natural energy norm. This work generalizes earlier results in [14] or [26], which discussed the case of a channel domain, while here the domain is curved.
引用
收藏
页码:741 / 766
页数:26
相关论文
共 34 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]  
Antontsev S.N., 1990, STUDIES MATH ITS APP, V22
[3]  
Cattabriga L., 1961, Rend. Semin. Mat. Univ. Padova, V31, P308
[4]   TREATMENT OF INCOMPATIBLE INITIAL AND BOUNDARY DATA FOR PARABOLIC EQUATIONS IN HIGHER DIMENSION [J].
Chen, Qingshan ;
Qin, Zhen ;
Temam, Roger .
MATHEMATICS OF COMPUTATION, 2011, 80 (276) :2071-2096
[5]   Numerical Resolution Near t=0 of Nonlinear Evolution Equations in the Presence of Corner Singularities in Space Dimension 1 [J].
Chen, Qingshan ;
Qin, Zhen ;
Temam, Roger .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (03) :568-586
[6]  
Ciarlet PG, 2005, J ELASTICITY, V78-79, P5
[7]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[8]   BOUNDARY-LAYERS IN LINEAR ELLIPTIC SINGULAR PERTURBATION PROBLEMS [J].
ECKHAUS, W .
SIAM REVIEW, 1972, 14 (02) :225-&
[9]   Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions [J].
Gie, Gung-Min ;
Kelliher, James P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (06) :1862-1892
[10]   Asymptotic analysis of the Stokes problem on general bounded domains: the case of a characteristic boundary [J].
Gie, Gung-Min ;
Hamouda, Makram ;
Temam, Roger .
APPLICABLE ANALYSIS, 2010, 89 (01) :49-66