Syntactic complexity of suffix-free languages

被引:0
作者
Brzozowski, Janusz A. [1 ]
Szykula, Marek [2 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Wroclaw, Inst Comp Sci, Joliot Curie 15, PL-50383 Wroclaw, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
Regular language; Suffix-free; Syntactic complexity; Transition semigroup; Upper bound; FREE REGULAR LANGUAGES; STATE COMPLEXITY;
D O I
10.1016/j.ic.2017.08.014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We solve an open problem concerning syntactic complexity: We prove that the cardinality of the syntactic semigroup of a suffix-free language with n left quotients (that is, with state complexity n) is at most (n - 1)(n-2) + n - 2 for n >= 6. Since this bound is known to be reachable, this settles the problem. We also reduce the alphabet of the witness languages reaching this bound to five letters instead of n + 2, and show that it cannot be any smaller. Finally, we prove that the transition semigroup of a minimal deterministic automaton accepting a witness language is unique for each n. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:174 / 190
页数:17
相关论文
共 16 条
[1]  
Ang T, 2009, ACTA CYBERN, V19, P445
[2]  
Berstel Jean, 2009, Codes and Automata
[3]  
Brzozowski J. A., 2017, THEORY COMPUT SYST
[4]  
Brzozowski J. A., 2015, LECT NOTES COMPUT SC, V9118, P33
[5]   Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages [J].
Brzozowski, Janusz ;
Li, Baiyu ;
Ye, Yuli .
THEORETICAL COMPUTER SCIENCE, 2012, 449 :37-53
[6]   Decision problems for convex languages [J].
Brzozowski, Janusz ;
Shallit, Jeffrey ;
Xu, Zhi .
INFORMATION AND COMPUTATION, 2011, 209 (03) :353-367
[7]   Complexity of suffix-free regular languages [J].
Brzozowski, Janusz A. ;
Szykula, Marek .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 89 :270-287
[8]  
Brzozowski Janusz A., 2010, Journal of Automata, Languages and Combinatorics, V15, P71
[9]  
Ganyushkin O, 2009, ALGEBRA APPL, V9, P1, DOI 10.1007/978-1-84800-281-4_1
[10]   State complexity of basic operations on suffix-free regular languages [J].
Han, Yo-Sub ;
Salomaa, Kai .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (27-29) :2537-2548