Exponential energy decay of solutions for a system of viscoelastic wave equations of Kirchhoff type with strong damping

被引:6
作者
Li, Gang [1 ]
Hong, Linghui [1 ]
Liu, Wenjun [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
关键词
viscoelastic wave equation; Kirchhoff type; strong damping; exponential decay; BLOW-UP SOLUTIONS; GLOBAL EXISTENCE; INTEGRODIFFERENTIAL EQUATION; UNIFORM DECAY; GENERAL DECAY; NONEXISTENCE; STABILITY;
D O I
10.1080/00036811.2011.647911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial boundary value problem for a system of viscoelastic wave equations of Kirchhoff type with strong damping is considered. We prove that, under suitable assumptions on relaxation functions and certain initial data, the decay rate of the solutions energy is exponential.
引用
收藏
页码:1046 / 1062
页数:17
相关论文
共 37 条
[1]  
Agre K, 2006, DIFFER INTEGRAL EQU, V19, P1235
[2]  
Andrade D., 2004, Bol. Soc. Parana. Mat. (3), V22, P106
[3]  
Benaissa A., 2002, C MATH, V94, P103, DOI https://doi.org/10.4064/CM94-1-8
[4]   General decay rate estimates for viscoelastic dissipative systems [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domingos ;
Martinez, P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :177-193
[5]  
Cavalcanti M.M., 2002, ELECT J DIFF EQNS, V2002
[6]   Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Santos, ML .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (02) :439-465
[7]   Existence and exponential decay for a Kirchhoff-carrier model with viscosity [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Prates, JS ;
Soriano, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 226 (01) :40-60
[8]   Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source [J].
Han, Xiaosen ;
Wang, Mingxin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5427-5450
[9]  
Komornik V., 1994, EXACT CONTROLLABILIT
[10]  
Li MR, 2003, TAIWAN J MATH, V7, P557