Dynamics of the higher-order structure of chromatin

被引:13
作者
Chen, Ping [1 ]
Li, Guohong [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
chromatin; higher-order structure; dynamics; transcriptional regulation;
D O I
10.1007/s13238-010-0130-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Eukaryotic DNA is hierarchically packaged into chromatin to fit inside the nucleus. Dynamics of the chromatin structure plays a critical role in transcriptional regulation and other biological processes that involve DNA, such as DNA replication and DNA repair. Many factors, including histone variants, histone modification, DNA methylation and the binding of non-histone architectural proteins regulate the structure of chromatin. Although the structure of nucleosomes, the fundamental repeating unit of chromatin, is clear, there is still much discussion on the higher-order levels of chromatin structure. Identifying the structural details and dynamics of higher-order chromatin fibers is therefore very important for understanding the organization and regulation of gene activities. Here, we review studies on the dynamics of chromatin higherorder structure and its relationship with gene transcription.
引用
收藏
页码:967 / 971
页数:5
相关论文
共 29 条
[1]   SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays [J].
Angelov, D ;
Verdel, A ;
An, WJ ;
Bondarenko, V ;
Hans, F ;
Doyen, CM ;
Studitsky, VM ;
Hamiche, A ;
Roeder, RG ;
Bouvet, P ;
Dimitrov, S .
EMBO JOURNAL, 2004, 23 (19) :3815-3824
[2]   Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain [J].
Bannister, AJ ;
Zegerman, P ;
Partridge, JF ;
Miska, EA ;
Thomas, JO ;
Allshire, RC ;
Kouzarides, T .
NATURE, 2001, 410 (6824) :120-124
[3]   Trinucleosome compaction studied by fluorescence energy transfer and scanning force microscopy [J].
Bussiek, Malte ;
Toth, Katalin ;
Schwarz, Nathalie ;
Langowski, Joerg .
BIOCHEMISTRY, 2006, 45 (36) :10838-10846
[4]   Determinants of histone H1 mobility and chromatin binding in living cells [J].
Catez, F ;
Ueda, T ;
Bustin, M .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (04) :305-310
[5]   Nucleosome arrays reveal the two-start organization of the chromatin fiber [J].
Dorigo, B ;
Schalch, T ;
Kulangara, A ;
Duda, S ;
Schroeder, RR ;
Richmond, TJ .
SCIENCE, 2004, 306 (5701) :1571-1573
[6]   Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ [J].
Eltsov, Mikhail ;
MacLellan, Kirsty M. ;
Maeshima, Kazuhiro ;
Frangakis, Achilleas S. ;
Dubochet, Jacques .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (50) :19732-19737
[7]   H2A.Z alters the nucleosome surface to promote HP1α-mediated chromatin fiber folding [J].
Fan, JY ;
Rangasamy, D ;
Luger, K ;
Tremethick, DJ .
MOLECULAR CELL, 2004, 16 (04) :655-661
[8]   Chromatin compaction by a polycomb group protein complex [J].
Francis, NJ ;
Kingston, RE ;
Woodcock, CL .
SCIENCE, 2004, 306 (5701) :1574-1577
[9]   Nucleosome disassembly intermediates characterized by single-molecule FRET [J].
Gansen, Alexander ;
Valeri, Alessandro ;
Hauger, Florian ;
Felekyan, Suren ;
Kalinin, Stanislav ;
Toth, Katalin ;
Langowski, Joerg ;
Seidel, Claus A. M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) :15308-15313
[10]   The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo [J].
Hendzel, MJ ;
Lever, MA ;
Crawford, E ;
Th'ng, JPH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20028-20034