Fuzzy expert system for predicting pathological stage of prostate cancer

被引:39
作者
Castanho, M. J. P. [1 ]
Hernandes, F. [2 ]
De Re, A. M. [2 ]
Rautenberg, S. [2 ]
Billis, A. [3 ]
机构
[1] Univ Estadual Centro Oeste, Dept Math, Guarapuava, PR, Brazil
[2] Univ Estadual Centro Oeste, Dept Computat Sci, Guarapuava, PR, Brazil
[3] Univ Estadual Campinas, Sch Med, Campinas, SP, Brazil
关键词
Fuzzy rule-based system; Genetic algorithm; Prostate cancer; ARTIFICIAL NEURAL-NETWORKS; PARTIN TABLES; CLINICAL STAGE; GLEASON SCORE; NOMOGRAMS; BREAST; CATALOG; ANTIGEN;
D O I
10.1016/j.eswa.2012.07.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prostate cancer is the second most common cancer among men, responsible for the loss of half a million lives each year worldwide, according to the World Health Organization. In prostate cancer, definitive therapy such as radical prostatectomy, is more effective when the cancer is organ-confined. The aim of this study is to investigate the performance of some fuzzy expert systems in the classification of patients with confined or non-confined cancer. To deal with the intrinsic uncertainty about the variables utilized to predict cancer stage, the developed approach is based on Fuzzy Set Theory. A fuzzy expert system was developed with the fuzzy rules and membership functions tuned by a genetic algorithm. As a result, the utilized approach reached better precision taking into account some correlated studies. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:466 / 470
页数:5
相关论文
共 40 条
[1]  
[Anonymous], 1997, J CLIN PATHOL
[2]   Decision curve analysis to compare 3 versions of Partin Tables to predict final pathologic stage [J].
Augustin, Herbert ;
Sun, Maxine ;
Isbarn, Hendrik ;
Pummer, Karl ;
Karakiewicz, Pierre .
UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2012, 30 (04) :396-401
[3]  
Baker O. F., 2008, P 10 INT C INF INT W, P706
[4]  
Baker OF, 2007, ICIAS 2007: INTERNATIONAL CONFERENCE ON INTELLIGENT & ADVANCED SYSTEMS, VOLS 1-3, PROCEEDINGS, P71
[5]   Neuro-fuzzy system for prostate cancer diagnosis [J].
Benecchi, Luigi .
UROLOGY, 2006, 68 (02) :357-361
[6]   Partin Tables cannot accurately predict the pathological stage at radical prostatectomy [J].
Bhojani, N. ;
Ahyai, S. ;
Graefen, M. ;
Capitanio, U. ;
Suardi, N. ;
Shariat, S. F. ;
Jeldres, C. ;
Erbersdobler, A. ;
Schlomm, T. ;
Haese, A. ;
Steuber, T. ;
Heinzer, H. ;
Montorsi, F. ;
Huland, H. ;
Karakiewicz, P. I. .
EJSO, 2009, 35 (02) :123-128
[7]  
Briganti Alberto, 2009, Eur Urol, V55, P743, DOI 10.1016/j.eururo.2008.11.038
[8]   Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans [J].
Chen, Hui ;
Zhang, Jing ;
Xu, Yan ;
Chen, Budong ;
Zhang, Kuan .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (13) :11503-11509
[9]   Prostate cancer nomograms: An update [J].
Chun, Felix K. -H. ;
Karakiewicz, Pierre I. ;
Briganti, Alberto ;
Gallina, Andrea ;
Kattan, Michael W. ;
Montorsi, Francesco ;
Huland, Hartwig ;
Graefen, Markus .
EUROPEAN UROLOGY, 2006, 50 (05) :914-926
[10]   Ten years of genetic fuzzy systems:: current framework and new trends [J].
Cordón, O ;
Gomide, F ;
Herrera, F ;
Hoffmann, F ;
Magdalena, L .
FUZZY SETS AND SYSTEMS, 2004, 141 (01) :5-31