Connectivity of Cartesian product graphs

被引:52
|
作者
Xu, JM [1 ]
Yang, C [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
connectivity; edge-connectivity; Cartesian product graphs;
D O I
10.1016/j.disc.2005.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Use V-i, K-i, lambda(i), delta(i) to denote order, connectivity, edge-connectivity and minimum degree of a graph G(i) for i = 1, 2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are K(G(1) x G(2)) >= K-1 + K-2 and (G(1) x G(2)) >= k(1) + k(2). This paper improves these results by proving that K(G(1) x G(2)) >= min {k(1) + delta(2), k(2) + delta(1)} and lambda(G(1) x G(2)) = min {delta(1) +delta(2) lambda(1) v(2), lambda(2) v(1)} if G(1) and G(2) are connected undirected graphs; K(G(1) x G(2)) >, min {k(1) + delta(2), k(2) + delta(1), 2K(1) + K-2, 2K(2) + K-1} if G(1) and G(2) are strongly connected digraphs. These results are also generalized to the Cartesian products of n (>= 3) connected graphs and n strongly connected digraphs, respectively. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [21] Fault diameter of Cartesian product graphs
    Xu, M
    Xu, JM
    Hou, XM
    INFORMATION PROCESSING LETTERS, 2005, 93 (05) : 245 - 248
  • [22] Forwarding indices of cartesian product graphs
    Xu, Jun-Ming
    Xu, Min
    Hou, Xinmin
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (05): : 1305 - 1315
  • [23] The λ4-Connectivity of the Cartesian Product of Trees
    Li, Hengzhe
    Wang, Jiajia
    Hao, Rong-Xia
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (03)
  • [24] The restricted arc connectivity of Cartesian product digraphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    INFORMATION PROCESSING LETTERS, 2009, 109 (21-22) : 1202 - 1205
  • [25] Characterizing Flag Graphs and Induced Subgraphs of Cartesian Product Graphs
    Iztok Peterin
    Order, 2004, 21 : 283 - 292
  • [26] Alliance free sets in Cartesian product graphs
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    Bermudo, Sergio
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1618 - 1625
  • [27] ON PATH-PAIRABILITY IN THE CARTESIAN PRODUCT OF GRAPHS
    Meszaros, Gabor
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (03) : 743 - 758
  • [28] Characterizing flag graphs and induced subgraphs of cartesian product graphs
    Peterin, I
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2004, 21 (04): : 283 - 292
  • [29] CONNECTIVITY OF TENSOR PRODUCT OF GRAPHS
    Paulraja, P.
    Agnes, V. Sheeba
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (04)
  • [30] Bandwidth of the cartesian product of two connected graphs
    Kojima, T
    Ando, K
    DISCRETE MATHEMATICS, 2002, 252 (1-3) : 227 - 235