Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications

被引:147
作者
Alshehri, Ali H. [1 ]
Jakubowska, Malgorzata [2 ,3 ]
Mlozniak, Anna [3 ]
Horaczek, Michal [2 ]
Rudka, Diana [2 ]
Free, Charles [1 ]
Carey, J. David [1 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Warsaw Univ Technol, Fac Mechatron, Warsaw, Poland
[3] Inst Elect Mat Technol, Warsaw, Poland
关键词
silver nanoparticles; high frequency conduction; GHz and sub-THz characteristics; surface roughness; antenna materials; metamaterials;
D O I
10.1021/am3022569
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An enhancement in the electrical performance of low temperature screen printed silver nanoparticles (nAg) has been measured at frequencies up to 220 GHz. We show 1.6 that for frequencies above 80 GHz the electrical losses in coplanar waveguide structures fabricated using nAg at 350 degrees C 5 are lower than those found in conventional thick film Ag conductors consisting of micrometer-sized grains and fabricated at 850 degrees C. The improved electrical performance is attributed to the better packing of the silver nanoparticles resulting in lower surface roughness by a factor of 3. We discuss how the use of silver nanoparticles offers new routes to high frequency applications on temperature sensitive conformal substrates and in sub-THz metamaterials.
引用
收藏
页码:7006 / 7009
页数:4
相关论文
共 23 条
[11]   Printed silver nanowire antennas with low signal loss at high-frequency radio [J].
Komoda, Natsuki ;
Nogi, Masaya ;
Suganuma, Katsuaki ;
Kohno, Kazuo ;
Akiyama, Yutaka ;
Otsuka, Kanji .
NANOSCALE, 2012, 4 (10) :3148-3153
[12]   Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects [J].
Lei, Y. ;
Mehmood, F. ;
Lee, S. ;
Greeley, J. ;
Lee, B. ;
Seifert, S. ;
Winans, R. E. ;
Elam, J. W. ;
Meyer, R. J. ;
Redfern, P. C. ;
Teschner, D. ;
Schlogl, R. ;
Pellin, M. J. ;
Curtiss, L. A. ;
Vajda, S. .
SCIENCE, 2010, 328 (5975) :224-228
[13]   Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry [J].
Little, S. A. ;
Begou, T. ;
Collins, R. W. ;
Marsillac, S. .
APPLIED PHYSICS LETTERS, 2012, 100 (05)
[14]  
Liu N, 2011, NAT MATER, V10, P631, DOI [10.1038/NMAT3029, 10.1038/nmat3029]
[15]   Triggering the Sintering of Silver Nanoparticles at Room Temperature [J].
Magdassi, Shlomo ;
Grouchko, Michael ;
Berezin, Oleg ;
Kamyshny, Alexander .
ACS NANO, 2010, 4 (04) :1943-1948
[16]  
Pozar D. M., 2004, MICROWAVE ENG, P56
[17]   An ink-jet-deposited passive component process for RFID [J].
Redinger, D ;
Molesa, S ;
Yin, S ;
Farschi, R ;
Subramanian, V .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (12) :1978-1983
[18]  
Roduner E, 2006, NANOSCOPIC MATERIALS: SIZE-DEPENDENT PHENOMENA, P1, DOI 10.1039/9781847557636
[19]   Inkjet Printing of Ultrawideband (UWB) Antennas on Paper-Based Substrates [J].
Shaker, George ;
Safavi-Naeini, Safieddin ;
Sangary, Nagula ;
Tentzeris, Manos M. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2011, 10 :111-114
[20]   Effective coordination number model for the size dependency of physical properties of nanocrystals [J].
Shandiz, M. Attarian .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (32)