Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications

被引:147
作者
Alshehri, Ali H. [1 ]
Jakubowska, Malgorzata [2 ,3 ]
Mlozniak, Anna [3 ]
Horaczek, Michal [2 ]
Rudka, Diana [2 ]
Free, Charles [1 ]
Carey, J. David [1 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Warsaw Univ Technol, Fac Mechatron, Warsaw, Poland
[3] Inst Elect Mat Technol, Warsaw, Poland
关键词
silver nanoparticles; high frequency conduction; GHz and sub-THz characteristics; surface roughness; antenna materials; metamaterials;
D O I
10.1021/am3022569
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An enhancement in the electrical performance of low temperature screen printed silver nanoparticles (nAg) has been measured at frequencies up to 220 GHz. We show 1.6 that for frequencies above 80 GHz the electrical losses in coplanar waveguide structures fabricated using nAg at 350 degrees C 5 are lower than those found in conventional thick film Ag conductors consisting of micrometer-sized grains and fabricated at 850 degrees C. The improved electrical performance is attributed to the better packing of the silver nanoparticles resulting in lower surface roughness by a factor of 3. We discuss how the use of silver nanoparticles offers new routes to high frequency applications on temperature sensitive conformal substrates and in sub-THz metamaterials.
引用
收藏
页码:7006 / 7009
页数:4
相关论文
共 23 条
[1]   Electrical sintering of nanoparticle structures [J].
Allen, Mark L. ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Ojanpera, Kimmo ;
Suhonen, Mika ;
Seppa, Heikki .
NANOTECHNOLOGY, 2008, 19 (17)
[2]   Electrical performance of carbon nanotube-polymer composites at frequencies up to 220 GHz [J].
Alshehri, Ali H. ;
Jakubowska, Malgorzata ;
Sloma, Marcin ;
Horaczek, Michal ;
Rudka, Diana ;
Free, Charles ;
Carey, J. David .
APPLIED PHYSICS LETTERS, 2011, 99 (15)
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[5]  
Griffiths D. J., 1999, INTRO ELECTRODYNAMIC, P364
[6]   Specific Heat, Melting, Crystallization, and Oxidation of Zinc Nanoparticles and Their Transmission Electron Microscopy Studies [J].
Gunawan, Lina ;
Johari, G. P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (51) :20159-20166
[7]   Laser-nanostructured Ag films as substrates for surface-enhanced Raman spectroscopy [J].
Henley, SJ ;
Carey, JD ;
Silva, SRP .
APPLIED PHYSICS LETTERS, 2006, 88 (08)
[8]   Excimer laser nanostructuring of nickel thin films for the catalytic growth of carbon nanotubes [J].
Henley, SJ ;
Poa, CHP ;
Adikaari, AADT ;
Giusca, CE ;
Carey, JD ;
Silva, SRP .
APPLIED PHYSICS LETTERS, 2004, 84 (20) :4035-4037
[9]   Radio-frequency transmission characteristics of a multi-walled carbon nanotube [J].
Jun, Seong Chan ;
Choi, J. H. ;
Cha, S. N. ;
Baik, C. W. ;
Lee, Sanghyo ;
Kim, H. Jin ;
Hone, James ;
Kim, J. M. .
NANOTECHNOLOGY, 2007, 18 (25)
[10]   Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication [J].
Ko, Seung H. ;
Park, Inkyu ;
Pan, Heng ;
Grigoropoulos, Costas P. ;
Pisano, Albert P. ;
Luscombe, Christine K. ;
Frechet, Jean M. J. .
NANO LETTERS, 2007, 7 (07) :1869-1877