On a Coupled System of Fractional Differential Equations via the Generalized Proportional Fractional Derivatives

被引:15
作者
Abbas, M. I. [1 ]
Ghaderi, M. [2 ]
Rezapour, Sh. [2 ,3 ]
Thabet, S. T. M. [4 ]
机构
[1] Alexandria Univ, Dept Math & Comp Sci, Fac Sci, Alexandria 21511, Egypt
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Univ Aden, Dept Math, Aden, Yemen
关键词
OPERATOR;
D O I
10.1155/2022/4779213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work investigates the existence and uniqueness of solutions for a coupled system of fractional differential equations with three-point generalized fractional integral boundary conditions within generalized proportional fractional derivatives of the Riemann-Liouville type. By using the Schauder and Banach fixed point theorems, we study the existence and uniqueness of solutions for the aforesaid system. Finally, we present an example to validate our theoretical outcomes.
引用
收藏
页数:10
相关论文
共 38 条
  • [1] On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function
    Abbas, Mohamed, I
    Ragusa, Maria Alessandra
    [J]. SYMMETRY-BASEL, 2021, 13 (02): : 1 - 16
  • [2] Dynamics and Ulam Stability for Fractional q-Difference Inclusions via Picard Operators Theory
    Abbas, Said
    Benchohra, Mouffak
    Karapinar, Erdal
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (03): : 5 - 21
  • [3] Some fractional integral formulas for the Mittag-Leffler type function with four parameters
    Agarwal, Praveen
    Nieto, Juan J.
    [J]. OPEN MATHEMATICS, 2015, 13 : 537 - 546
  • [4] Extended Riemann-Liouville fractional derivative operator and its applications
    Agarwal, Praveen
    Choi, Junesang
    Paris, R. B.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 451 - 466
  • [5] EXISTENCE OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH COUPLED NONLOCAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Luca, Rodica
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 423 - 441
  • [6] On the Existence and Stability of a Neutral Stochastic Fractional Differential System
    Ahmad, Manzoor
    Zada, Akbar
    Ghaderi, Mehran
    George, Reny
    Rezapour, Shahram
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [7] On fractional impulsive system for methanol detoxification in human body
    Ain, Qura tul
    Khan, Aziz
    Ullah, Muhammad Irfan
    Alqudah, Manar A.
    Abdeljawad, Thabet
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 160
  • [8] Hyers-Ulam Stability of Functional Equation Deriving from Quadratic Mapping in Non-Archimedean (n, β)-Normed Spaces
    Alessa, Nazek
    Tamilvanan, K.
    Loganathan, K.
    Selvi, K. Kalai
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [9] A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality
    Alzabut, Jehad
    Selvam, A. George Maria
    Dhineshbabu, Raghupathi
    Tyagi, Swati
    Ghaderi, Mehran
    Rezapour, Shahram
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [10] Anderson D R., 2015, ADV DYN SYST APPL, V10, P109, DOI DOI 10.13140/RG.2.1.1744.9444