Shear thinning in non-Brownian suspensions explained by variable friction between particles

被引:72
|
作者
Lobry, Laurent [1 ]
Lemaire, Elisabeth [1 ]
Blanc, Frederic [1 ]
Gallier, Stany [2 ]
Peters, Francois [1 ]
机构
[1] CNRS UCA, Inst Phys Nice, F-06108 Nice 2, France
[2] Le Bouchet Res Ctr, ArianeGrp, F-91710 Vert Le Petit, France
关键词
complex fluids; rheology; suspensions; CONCENTRATED SUSPENSIONS; COLLOIDAL PARTICLES; SURFACE-ROUGHNESS; NORMAL STRESSES; POLYMER SPHERE; RHEOLOGY; CONTACT; ADHESION; FORCES; MODEL;
D O I
10.1017/jfm.2018.881
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We propose to explain shear-thinning behaviour observed in most concentrated non-Brownian suspensions by variable friction between particles. Considering the low magnitude of the forces experienced by the particles of suspensions under shear flow, it is first argued that rough particles come into solid contact through one or a few asperities. In such a few-asperity elastic-plastic contact, the friction coefficient is expected not to be constant but to decrease with increasing normal load. Simulations based on the force coupling method and including such a load-dependent friction coefficient are performed for various particle volume fractions. The results of the numerical simulations are compared to viscosity measurements carried out on suspensions of polystyrene particles (40 mu m in diameter) dispersed in a Newtonian silicon oil. The agreement is shown to be satisfactory. Furthermore, the comparison between the simulations conducted either with a constant or a load-dependent friction coefficient provides a model for the shear-thinning viscosity. In this model the effective friction coefficient mu(eff) is specified by the effective normal contact force which is simply proportional to the bulk shear stress. As the shear stress increases, mu(eff) decreases and the jamming volume fraction increases, leading to the reduction of the viscosity. Finally, using this model, we show that it is possible to evaluate the microscopic friction coefficient for each applied shear stress from the rheometric measurements.
引用
收藏
页码:682 / 710
页数:29
相关论文
共 50 条
  • [11] Shear thickening regimes of dense non-Brownian suspensions
    Ness, Christopher
    Sun, Jin
    SOFT MATTER, 2016, 12 (03) : 914 - 924
  • [12] Microscopic Mechanism for Shear Thickening of Non-Brownian Suspensions
    Fernandez, Nicolas
    Mani, Roman
    Rinaldi, David
    Kadau, Dirk
    Mosquet, Martin
    Lombois-Burger, Helene
    Cayer-Barrioz, Juliette
    Herrmann, Hans J.
    Spencer, Nicholas D.
    Isa, Lucio
    PHYSICAL REVIEW LETTERS, 2013, 111 (10)
  • [13] Dynamics of non-Brownian fiber suspensions under periodic shear
    Franceschini, Alexandre
    Filippidi, Emmanouela
    Guazzelli, Elisabeth
    Pine, David J.
    SOFT MATTER, 2014, 10 (35) : 6722 - 6731
  • [14] Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions
    Mari, Romain
    Seto, Ryohei
    Morris, Jeffrey F.
    Denn, Morton M.
    JOURNAL OF RHEOLOGY, 2014, 58 (06) : 1693 - 1724
  • [15] Rheology of non-Brownian suspensions: a rough contact story
    Lemaire, Elisabeth
    Blanc, Frederic
    Claudet, Cyrille
    Gallier, Stany
    Lobry, Laurent
    Peters, Francois
    RHEOLOGICA ACTA, 2023, 62 (5-6) : 253 - 268
  • [16] Shear Thickening in Non-Brownian Suspensions: An Excluded Volume Effect
    Picano, Francesco
    Breugem, Wim-Paul
    Mitra, Dhrubaditya
    Brandt, Luca
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [17] Heterogeneous solvent dissipation coupled with particle rearrangement in shear-thinning non-Brownian suspensions
    Terayama, Tomoharu
    Furukawa, Akira
    SOFT MATTER, 2024, 20 (34) : 6714 - 6722
  • [18] Shear Flow of Non-Brownian Suspensions Close to Jamming
    Andreotti, Bruno
    Barrat, Jean-Louis
    Heussinger, Claus
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)
  • [19] Ordering transition of non-Brownian suspensions in confined steady shear flow
    Yeo, Kyongmin
    Maxey, Martin R.
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [20] Shear and normal stress measurements in non-Brownian monodisperse and bidisperse suspensions
    Gamonpilas, Chaiwut
    Morris, Jeffrey F.
    Denn, Morton M.
    JOURNAL OF RHEOLOGY, 2016, 60 (02) : 289 - 296