A construction for constant-composition codes

被引:10
作者
Ding, Yang [1 ]
机构
[1] SE Univ, Dept Math, Nanjing 210096, Peoples R China
关键词
algebraic geometry codes; concatenated codes; constant-composition codes; self-orthogonal codes;
D O I
10.1109/TIT.2008.926380
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By employing the residue polynomials, we give a construction of constant-composition codes. This construction generalizes the one proposed by Xing (2002). It turns out that when d = 3 this construction gives a lower bound of constant-composition codes improving the one by Luo et al. (2003) for some case. Moreover, for d > 3, we give a lower bound on maximal size of constant-composition codes. In particular, our bound for d = 5 gives the best possible size of constant-composition codes up to magnitude.
引用
收藏
页码:3738 / 3741
页数:4
相关论文
共 16 条
[1]   The PBD-closure of constant-composition codes [J].
Chee, Yeow Meng ;
Ling, Alan C. H. ;
Ling, San ;
Shen, Hao .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (08) :2685-2692
[2]   On constant composition codes [J].
Chu, WS ;
Colbourn, CJ ;
Dukes, P .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (06) :912-929
[3]   Constructions for permutation codes in powerline communications [J].
Chu, WS ;
Colbourn, CJ ;
Dukes, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) :51-64
[4]   A family of optimal constant-composition codes [J].
Ding, CS ;
Yuan, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) :3668-3671
[5]   Algebraic constructions of constant composition codes [J].
Ding, CS ;
Yin, JX .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (04) :1585-1589
[6]   Combinatorial constructions of optimal constant-composition codes [J].
Ding, CS ;
Yin, JX .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) :3671-3674
[7]   A construction of optimal constant composition codes [J].
Ding, Cunsheng ;
Yin, Jianxing .
DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (02) :157-165
[8]  
Dyachkov A. G., 1984, Problems of Control and Information Theory, V13, P357
[9]   SPHERICAL CODES GENERATED BY BINARY PARTITIONS OF SYMMETRICAL POINTSETS [J].
ERICSON, T ;
ZINOVIEV, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) :107-129
[10]   On constant-composition codes over Zq [J].
Luo, Y ;
Fu, FW ;
Vinck, AJH ;
Chen, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :3010-3016