Pluripotential theory on quaternionic manifolds

被引:23
作者
Alesker, Semyon [1 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
关键词
Quaternionic manifolds; Plurisubharmonic functions; Monge-Ampere operator; PLURISUBHARMONIC-FUNCTIONS; HYPERCOMPLEX; VALUATIONS;
D O I
10.1016/j.geomphys.2011.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On any quaternionic manifold of dimension greater than 4 a class of plurisubharmonic functions (or, rather, sections of an appropriate line bundle) is introduced. Then a Monge-Ampere operator is defined. It is shown that it satisfies a version of the theorems of A. D. Alexandrov and Chern-Levine-Nirenberg. For more special classes of manifolds analogous results were previously obtained in Alesker (2003) [1] for the flat quaternionic space H-n and in Alesker and Verbitsky (2006) [5] for hypercomplex manifolds. One of the new technical aspects of the present paper is the systematic use of the Baston differential operators, for which we also prove a new multiplicativity property. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1189 / 1206
页数:18
相关论文
共 33 条
[1]  
Aleksandrov A.D., 1958, Vestnic Leningrad University., V13, P5
[2]   Valuations on convex sets, non-commutative determinants, and pluripotential theory [J].
Alesker, S .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :561-595
[3]   Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables [J].
Alesker, S .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (01) :1-35
[4]   Quaternionic Monge-AmpSre equation and Calabi problem for HKT-manifolds [J].
Alesker, S. ;
Verbitsky, M. .
ISRAEL JOURNAL OF MATHEMATICS, 2010, 176 (01) :109-138
[5]  
Alesker S., 2003, J. Geom. Anal, V13, P205, DOI DOI 10.1007/BF02930695
[6]   Plurisubharmonic functions on the octonionic plane and Spin(9)-Invariant valuations on convex sets [J].
Alesker, Semyon .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) :651-686
[7]   Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry [J].
Alesker, Semyon ;
Verbitsky, Misha .
JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (03) :375-399
[8]  
[Anonymous], ARXIV08024202
[9]  
[Anonymous], GRUNDLEHREN MATH WIS
[10]  
[Anonymous], ARXIVMATH0510140