Multi-Tier Edge-to-Cloud Architecture for Adaptive Video Delivery

被引:6
作者
Immich, Roger [1 ]
Villas, Leandro [1 ]
Bittencourt, Luiz [1 ]
Madeira, Edmundo [1 ]
机构
[1] Univ Estadual Campinas, Inst Comp, Campinas, Brazil
来源
2019 7TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD 2019) | 2019年
基金
巴西圣保罗研究基金会;
关键词
Multi-tier Video Delivery; Edge computing; Microservice chaining; 5G; FOG; NFV;
D O I
10.1109/FiCloud.2019.00012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the last few years, there has been a rapid proliferation of a wide range of real-time video services and applications. These technologies flood the wireless systems with video content on a daily basis. As a result of this sharp increase in video traffic, the prospect of errors due to network interference and congestion rises. Incidentally, the adoption of the 5th generation of wireless systems (5G) will allow this growth to be even greater due to its high bandwidth capacity and low latency. However, even with these improvements on the wireless capabilities, a reliable and high-quality video transmission still imposes several challenges, such as how to handle a large number of heterogeneous devices and how to better use the resource-richer Edge, Fog, and Cloud computing sources to meet the user's requirements. To overcome these issues, this work proposes a multi-tier video delivery architecture relying upon several technologies such as Multi-access Edge computing (MEC), 5G slices, and microservice placement/chaining. Furthermore, to assess the proposed idea an experimental proof-of-concept testbed of the multi-tier architecture was designed, implemented, and evaluated using real-world tools and actual video sequences. The results obtained supported our claim that a multi-tier video delivery system is feasible and can greatly benefit the end-users.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 20 条
[1]  
[Anonymous], SENSORS
[2]  
[Anonymous], 2018, INTERNET OF THINGS
[3]  
[Anonymous], 2011, CISCO VISUAL NETWORK
[4]  
[Anonymous], WIRELESS NETWORKS
[5]  
[Anonymous], 2016, P MED AD HOC NETW WO, DOI DOI 10.1109/MEDHOCNET.2016.7528427
[6]  
[Anonymous], INTERNET OF THINGS
[7]  
Bonomi F., 2014, Big Data and Internet of Things: A Roadmap for Smart Environments, P169
[8]   Architectural Imperatives for Fog Computing: Use Cases, Requirements, and Architectural Techniques for Fog-Enabled IoT Networks [J].
Byers, Charles C. .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (08) :14-20
[9]  
Nguyen D, 2017, IEEE GLOB COMM CONF
[10]   Towards a Multi-tier Fog/Cloud Architecture for Video Streaming [J].
Gama, Eduardo S. ;
Immich, Roger ;
Bittencourt, Luiz F. .
2018 IEEE/ACM INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING COMPANION (UCC COMPANION), 2018, :13-14