Nanostructured metals for light-based technologies

被引:17
作者
Gordon, Reuven [1 ]
机构
[1] Univ Victoria, Victoria, BC, Canada
关键词
surface plasmons; optical antennas; nanophotonics; spectroscopy; optical tweezers; nonlinear optics; sensors; SURFACE-PLASMON RESONANCE; ENHANCED INFRARED-ABSORPTION; SINGLE-MOLECULE ANALYSIS; FIELD ENHANCEMENT; 2ND-HARMONIC GENERATION; RAMAN-SCATTERING; LONG-RANGE; GOLD NANOPARTICLES; WAVE-GUIDES; QUANTUM ELECTRODYNAMICS;
D O I
10.1088/1361-6528/ab0435
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The basic theoretical understanding of light interacting with nanostructured metals that has existed since the early 1900s has become more relevant in the last two decades, largely because of new approaches to structure metals down to the nanometer scale or smaller. Here, a broad overview of the concepts and applications of nanostructuring metals for light-based technologies is given. The theory of the response of metals to an applied oscillating field is given, including a discussion of nonlocal, nonlinear and quantum effects. Using this metal response, the guiding of electromagnetic (light) waves using metals is given, with a particular emphasis on the impact of nanostructured metals for tighter confinement and slower propagation. Similarly, the influence of metal nanostructures on light scattering by isolated metal structures, like nanoparticles and nanoantennas, is described, with basic results presented including plasmonic/circuit resonances, the single channel limit, directivity enhancement, the maximum power transfer theorem, limits on the magnetic response from kinetic inductance and the scaling of gap plasmons to the nanometer scale and smaller. A brief overview of nanofabrication approaches to creating metal nanostructures is given. Finally, existing and emerging light-based applications are presented, including those for sensing, spectroscopy (including local refractive index, Raman, IR absorption), detection (including Schottky detectors), switching (including terahertz photoconductive antennas), modulation, energy harvesting and photocatalysis, light emission (including lasers and tunneling based light emission), optical tweezing, nonlinear optics, subwavelength imaging and lithography and high density data storage.
引用
收藏
页数:20
相关论文
共 278 条
[51]   Quantum size effects manifest in infrared spectra of single bismuth nanowires [J].
Cornelius, TW ;
Toimil-Molares, ME ;
Neumann, R ;
Fahsold, G ;
Lovrincic, R ;
Pucci, A ;
Karim, S .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[52]   Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles [J].
Cortie, Michael B. ;
McDonagh, Andrew M. .
CHEMICAL REVIEWS, 2011, 111 (06) :3713-3735
[53]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933
[54]   Amplification of long-range surface plasmons by a dipolar gain medium [J].
De Leon, Israel ;
Berini, Pierre .
NATURE PHOTONICS, 2010, 4 (06) :382-387
[55]   Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method [J].
Deinega, Alexei ;
Valuev, Ilya .
OPTICS LETTERS, 2007, 32 (23) :3429-3431
[56]   Coherent acoustic mode oscillation and damping in silver nanoparticles [J].
Del Fatti, N ;
Voisin, C ;
Chevy, F ;
Vallée, F ;
Flytzanis, C .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (23) :11484-11487
[57]   PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator [J].
Dionne, Jennifer A. ;
Diest, Kenneth ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2009, 9 (02) :897-902
[58]   Fast and Transparent Adaptive Lens Based on Plasmonic Heating [J].
Donner, Jon S. ;
Morales-Dalmau, Jordi ;
Alda, Irene ;
Marty, Renaud ;
Quidant, Romain .
ACS PHOTONICS, 2015, 2 (03) :355-360
[59]   Tunable Subnanometer Gap Plasmonic Metasurfaces [J].
Doyle, Dennis ;
Charipar, Nicholas ;
Argyropoulos, Christos ;
Trammell, Scott A. ;
Nita, Rafaela ;
Naciri, Jawad ;
Pique, Alberto ;
Herzog, Joseph B. ;
Fontana, Jake .
ACS PHOTONICS, 2018, 5 (03) :1012-+
[60]  
DREXHAGE KH, 1968, BERICH BUNSEN GESELL, V72, P329