Mechanistic Insights into Iridium Catalyzed Disproportionation of Formic Acid to CO2 and Methanol: A DFT Study

被引:16
作者
Yan, Xiuli [1 ,2 ]
Yang, Xinzheng [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Beijing Natl Lab Mol Sci, Inst Chem,State Key Lab Struct Chem Unstable & St, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; CARBON-DIOXIDE; HYDROGEN STORAGE; HOMOGENEOUS HYDROGENATION; DENSITY FUNCTIONALS; DEHYDROGENATION; TEMPERATURE; COMPLEXES; EXCHANGE; COBALT;
D O I
10.1021/acs.organomet.7b00913
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The disproportionation of formic acid to methanol catalyzed by a half-sandwich iridium complex, [Cp*Ir(bpy-Me)OH2](2+), was computationally investigated by using density functional theory. A newly proposed mechanism features three interrelated catalytic cycles, the dehydrogenation of formic acid to CO2 and H-2 the hydrogenation of formic acid to formaldehyde with the formation of water, and the hydrogenation of formaldehyde to methanol. Methanol assisted proton transfer and direct C-O bond cleavage after hydroxyl deprotonation in two competitive pathways for the formation of formaldehyde are the rate-determining steps in the whole catalytic reaction. Calculation results indicate that the formation of formaldehyde from methanediol through direct cleavage of a C-O bond after hydroxyl deprotonation has a free energy barrier of 25.9 kcal/mol, which is 1.9 kcal/mol more favorable than methanol assisted proton transfer.
引用
收藏
页码:1519 / 1525
页数:7
相关论文
共 61 条
[1]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[2]  
[Anonymous], 2015, Gaussian 09, Revision D.01
[3]   The Hydrogen Issue [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
CHEMSUSCHEM, 2011, 4 (01) :21-36
[4]  
Balaraman E, 2011, NAT CHEM, V3, P609, DOI [10.1038/NCHEM.1089, 10.1038/nchem.1089]
[5]   Long-range metal-ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid [J].
Barnard, Jonathan H. ;
Wang, Chao ;
Berry, Neil G. ;
Xiao, Jianliang .
CHEMICAL SCIENCE, 2013, 4 (03) :1234-1244
[6]   Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts [J].
Bernskoetter, Wesley H. ;
Hazari, Nilay .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) :1049-1058
[7]  
Bockris J.O. M., 1975, ENERGY SOLAR HYDROGE
[8]   Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst [J].
Boddien, Albert ;
Mellmann, Doerthe ;
Gaertner, Felix ;
Jackstell, Ralf ;
Junge, Henrik ;
Dyson, Paul J. ;
Laurenczy, Gabor ;
Ludwig, Ralf ;
Beller, Matthias .
SCIENCE, 2011, 333 (6050) :1733-1736
[9]   Comment on "Accurate experimental values for the free energies of hydration of H+, OH-, and H3O+" [J].
Camaioni, DM ;
Schwerdtfeger, CA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (47) :10795-10797
[10]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620