Mechanistic Insights into Iridium Catalyzed Disproportionation of Formic Acid to CO2 and Methanol: A DFT Study

被引:16
作者
Yan, Xiuli [1 ,2 ]
Yang, Xinzheng [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, Beijing Natl Lab Mol Sci, Inst Chem,State Key Lab Struct Chem Unstable & St, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; CARBON-DIOXIDE; HYDROGEN STORAGE; HOMOGENEOUS HYDROGENATION; DENSITY FUNCTIONALS; DEHYDROGENATION; TEMPERATURE; COMPLEXES; EXCHANGE; COBALT;
D O I
10.1021/acs.organomet.7b00913
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The disproportionation of formic acid to methanol catalyzed by a half-sandwich iridium complex, [Cp*Ir(bpy-Me)OH2](2+), was computationally investigated by using density functional theory. A newly proposed mechanism features three interrelated catalytic cycles, the dehydrogenation of formic acid to CO2 and H-2 the hydrogenation of formic acid to formaldehyde with the formation of water, and the hydrogenation of formaldehyde to methanol. Methanol assisted proton transfer and direct C-O bond cleavage after hydroxyl deprotonation in two competitive pathways for the formation of formaldehyde are the rate-determining steps in the whole catalytic reaction. Calculation results indicate that the formation of formaldehyde from methanediol through direct cleavage of a C-O bond after hydroxyl deprotonation has a free energy barrier of 25.9 kcal/mol, which is 1.9 kcal/mol more favorable than methanol assisted proton transfer.
引用
收藏
页码:1519 / 1525
页数:7
相关论文
共 61 条
  • [1] ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS
    ANDRAE, D
    HAUSSERMANN, U
    DOLG, M
    STOLL, H
    PREUSS, H
    [J]. THEORETICA CHIMICA ACTA, 1990, 77 (02): : 123 - 141
  • [2] [Anonymous], 2015, Gaussian 09, Revision D.01
  • [3] The Hydrogen Issue
    Armaroli, Nicola
    Balzani, Vincenzo
    [J]. CHEMSUSCHEM, 2011, 4 (01) : 21 - 36
  • [4] Balaraman E, 2011, NAT CHEM, V3, P609, DOI [10.1038/NCHEM.1089, 10.1038/nchem.1089]
  • [5] Long-range metal-ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
    Barnard, Jonathan H.
    Wang, Chao
    Berry, Neil G.
    Xiao, Jianliang
    [J]. CHEMICAL SCIENCE, 2013, 4 (03) : 1234 - 1244
  • [6] Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
    Bernskoetter, Wesley H.
    Hazari, Nilay
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) : 1049 - 1058
  • [7] Bockris J.O. M., 1975, ENERGY SOLAR HYDROGE
  • [8] Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
    Boddien, Albert
    Mellmann, Doerthe
    Gaertner, Felix
    Jackstell, Ralf
    Junge, Henrik
    Dyson, Paul J.
    Laurenczy, Gabor
    Ludwig, Ralf
    Beller, Matthias
    [J]. SCIENCE, 2011, 333 (6050) : 1733 - 1736
  • [9] Comment on "Accurate experimental values for the free energies of hydration of H+, OH-, and H3O+"
    Camaioni, DM
    Schwerdtfeger, CA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (47) : 10795 - 10797
  • [10] Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
    Chai, Jeng-Da
    Head-Gordon, Martin
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) : 6615 - 6620