Efficient waste heat recovery system for high-temperature solid particles based on heat transfer enhancement

被引:27
作者
Jiang, Binfan [1 ,2 ]
Xia, Dehong [1 ,3 ]
Guo, Hao [1 ]
Xiao, Linshu [1 ]
Qu, Hengyu [1 ]
Liu, Xiangjun [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[2] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
[3] Univ Sci & Technol Beijing, Beijing Key Lab Energy Saving & Emiss Reduct Met, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
Waste heat recovery; Solid particles; Double-medium system; Heat transfer enhancement; Pareto optimization; MULTIOBJECTIVE OPTIMIZATION; GRANULATION; COOLER; TUBE;
D O I
10.1016/j.applthermaleng.2019.03.101
中图分类号
O414.1 [热力学];
学科分类号
摘要
A series of efficient heat recovery methods including PCHEE-A, PCHEE-K and a double-medium system is proposed in this paper, which is to provide comprehensive solutions for high temperature particle in different situations. The PCHEE-A and PCHEE-K can increase the heat transfer area and heat transfer coefficient, through extending specific area to 1000-2000 m(2)/m(3) and inducing turbulence in the heat transfer boundary, respectively. For the double-medium system which can achieve deep heat recovery and utilization, a multi-dimensional thermal resistance model is established to conduct heat analysis. Based on the model, Pareto frontier optimization of the double-medium system is carried out, and the optimal medium arrangement as well as the heat load distribution is derived. By combing the above methods, three typical systems (single-medium vertical plate-type with PCHEE-A, double-medium vertical tube-type and horizontal-type with PCHEE-K) are established and can get heat recovery efficiency at around 80%.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [11] Lagrangian simulation and exergy analysis for waste heat recovery from high-temperature particles using countercurrent moving beds
    Liang, Xiao
    Liu, Xiang Jun
    Xia, Dehong
    APPLIED THERMAL ENGINEERING, 2019, 160
  • [12] Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery
    Mateu-Ryo, Carlos
    Navarro-Esbri, Joaquin
    Mota-Babiloni, Adrian
    Amat-Albuixech, Marta
    Moles, Francisco
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 90 : 229 - 237
  • [13] Analysis of low GWP ternary zeotropic mixtures applied in high-temperature heat pump for waste heat recovery
    Liu, Jian
    Zhou, Fang
    Lyu, Ning
    Fan, Haibin
    Zhang, Xiaosong
    ENERGY CONVERSION AND MANAGEMENT, 2023, 292
  • [14] Study on waste heat recovery from sludge drying exhaust gas based on High-Temperature heat pump coupled with steam compression
    Wang, Ruoting
    Deng, Wenyi
    Wang, Lihua
    Hu, Mingtao
    Chen, Guang
    Su, Yaxin
    APPLIED THERMAL ENGINEERING, 2025, 266
  • [15] Investigation of the three-phase spiral countercurrent heat exchange and fluid dynamics in an innovative high-temperature particle waste heat recovery system
    Shen, Anxiang
    Wang, Tao
    Xu, Huijie
    Shi, Yutao
    Chen, Yang
    Zhou, Jianqiu
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2025, 114
  • [16] Reversible high-temperature heat pump/ORC for waste heat recovery in various ships: A techno-economic assessment
    Kosmadakis, George
    Neofytou, Panagiotis
    ENERGY, 2022, 256
  • [17] An assessment of the performance of heat transfer enhancement for optimizing high-temperature thermal energy storage
    Ullah, Fahim
    Hasrat, Kamran
    Iqbal, Sami
    Kumar, Sunel
    Wang, Shuang
    Yuan, Chuan
    Mu, Mao
    BUILDING SERVICES ENGINEERING RESEARCH & TECHNOLOGY, 2024, 45 (05) : 641 - 654
  • [18] An experimental investigation on the heat transfer performance of a liquid metal high-temperature oscillating heat pipe
    Ji, Yulong
    Wu, Mengke
    Feng, Yanmin
    Yu, Chunrong
    Chu, Lilin
    Chang, Chao
    Li, Yantao
    Xiao, Xiu
    Ma, Hongbin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 149
  • [19] Simulation and optimization of the waste heat recovery system of the ship power system based on the heat current method
    Wei, Zhi-guo
    Qiu, Zhi-qiang
    Xiao, Qi
    Shao, Wei
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (12) : 4566 - 4579
  • [20] High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery
    Zhang, Yanliang
    Cleary, Martin
    Wang, Xiaowei
    Kempf, Nicholas
    Schoensee, Luke
    Yang, Jian
    Joshi, Gin
    Meda, Lakshmikanth
    ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 946 - 950