Gait Identification Based on Hidden Markov Model

被引:0
作者
Zhao, XiLing [1 ]
Shang, XinHua [1 ]
机构
[1] Xinyang Agr Coll, Dept Comp Sci, Xinyang, Peoples R China
来源
2012 2ND INTERNATIONAL CONFERENCE ON APPLIED ROBOTICS FOR THE POWER INDUSTRY (CARPI) | 2012年
关键词
Gait recognition; Hidden Markov Model; K-means Algorithm; Overflow; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians (G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. Improved training process can be solved arithmetic overflow. Finally, the recognition is achieved by HMM. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.
引用
收藏
页码:812 / 815
页数:4
相关论文
共 8 条
  • [1] Synchronization of oscillations for machine perception of gaits
    Boyd, JE
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2004, 96 (01) : 35 - 59
  • [2] Hong S, 2009, INT J CONTROL AUTOM, V7, P799, DOI [10.1007/S12555-009-0512-1, 10.1007/s12555-009-0512-1]
  • [3] Lee L., 2003, 2003014 AI MIT
  • [4] Advances in automatic gait recognition
    Nixon, MS
    Carter, JN
    [J]. SIXTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2004, : 139 - 144
  • [5] NIYOGI S, 1994, P IEEE WORKSH NONR M, P24
  • [6] A TUTORIAL ON HIDDEN MARKOV-MODELS AND SELECTED APPLICATIONS IN SPEECH RECOGNITION
    RABINER, LR
    [J]. PROCEEDINGS OF THE IEEE, 1989, 77 (02) : 257 - 286
  • [7] Xiao DG, 2008, IEEE INT C NETW SENS, P418
  • [8] Zhang D., 2001, Proceedings of IEEE International Conference on Multimedia and Expo, P317