Molecular dynamics simulations of oxygen ion diffusion in yttria-stabilized zirconia

被引:27
|
作者
Perumal, TP
Sridhar, V
Murthy, KPN [1 ]
Easwarakumar, KS
Ramasamy, S
机构
[1] Indira Gandhi Ctr Atom Res, Div Mat Sci, Ctr Theoret Studies, Kalpakkam 603102, Tamil Nadu, India
[2] Univ Madras, Dept Comp Sci, Madras 600005, Tamil Nadu, India
[3] Anna Univ, Sch Engn & Comp Sci, Madras 600025, Tamil Nadu, India
[4] Univ Madras, Dept Phys Nucl, Madras 600025, Tamil Nadu, India
关键词
yttria-stabilized zirconia; superionic conductor; oxygen ion diffusion; oxygen ionic conductivity; radial distribution function g(r);
D O I
10.1016/S0378-4371(02)00595-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Oxygen ion diffusion in yttria-stabilized zirconia (YSZ) is studied employing molecular dynamics simulation. Oxygen ions migrate mainly by nearest neighbour hopping amongst the tetrahedral lattice sites of zirconium ions. A linear relation between the mean square displacement and time is found, after the oxygen ions have moved over distances much larger than the characteristic distances of the underlying crystal structure. In this diffusive region, the bulk oxygen tracer diffusion coefficient is 2.21 x 10(-6) cm(2) s(-1) at 1759 K and 3.53 x 10(-6) cm(2) s(-1) at 2057 K. The ionic conductivity, calculated from the bulk oxygen tracer diffusion coefficient, matches well with the experimental values. For all the ion pairs in YSZ, we have calculated the radial distribution function. We find that the peak height is smaller at higher temperature, due to the volume expansion of the YSZ crystal. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [21] Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries
    De Souza, Roger A.
    Pietrowski, Martha J.
    Anselmi-Tamburini, Umberto
    Kim, Sangtae
    Munir, Zuhair A.
    Martin, Manfred
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (15) : 2067 - 2072
  • [22] Thermal conductivity and oxygen tracer diffusion of yttria stabilized zirconia by molecular dynamics
    Momenzadeh L.
    Belova I.V.
    Murch G.E.
    Defect and Diffusion Forum, 2021, 407 : 51 - 58
  • [23] Diffusion of Water Species in Yttria-Stabilized Zirconia
    Duong, Tuan
    Limarga, Andi M.
    Clarke, David R.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (11) : 2731 - 2737
  • [24] Diffusion of water species in yttria-stabilized zirconia
    Duong, Tuan
    Limarga, Andi M.
    Clarke, David R.
    Journal of the American Ceramic Society, 2009, 92 (11): : 2731 - 2737
  • [25] Activation enthalpies for oxygen ion motion in cubic yttria-stabilized zirconia
    Darby, R. J.
    Kumar, R. V.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (19) : 6567 - 6570
  • [26] Activation enthalpies for oxygen ion motion in cubic yttria-stabilized zirconia
    R. J. Darby
    R. V. Kumar
    Journal of Materials Science, 2008, 43 : 6567 - 6570
  • [27] Molecular dynamics simulations of oxygen ion diffusion and superionic conduction in ytterbia-stabilized zirconia
    Perumal, T. Pramananda
    Sridhar, V.
    Murthy, K. P. N.
    Easwarakumar, K. S.
    Ramasamy, S.
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (04) : 865 - 872
  • [28] Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia
    Yamamura, Yoshihiko
    Kawasaki, Shinji
    Sakai, Hiroaki
    Solid State Ionics, 1999, 126 (01): : 181 - 189
  • [29] Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia
    Yamamura, Y
    Kawasaki, S
    Sakai, H
    SOLID STATE IONICS, 1999, 126 (1-2) : 181 - 189
  • [30] Thermal Transport in Nanoporous Yttria-Stabilized Zirconia by Molecular Dynamics Simulation
    Zhao S.
    Shao C.
    Zahiri S.
    Zhao C.
    Bao H.
    Journal of Shanghai Jiaotong University (Science), 2018, 23 (01) : 38 - 44