Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing

被引:215
作者
King, Nicholas S. [1 ,4 ]
Liu, Lifei [1 ,4 ]
Yang, Xiao [1 ,4 ]
Cerjan, Benjamin [1 ,4 ]
Everitt, Henry O. [2 ,5 ]
Nordlander, Peter [1 ,2 ,4 ]
Halas, Naomi J. [1 ,2 ,3 ,4 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[2] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
[4] Rice Univ, Lab Nanophoton, Houston, TX 77005 USA
[5] Army Aviat & Missile RD&E Ctr, Redstone Arsenal, AL 35898 USA
关键词
plasmon; aluminum; ultraviolet; Fano resonance; chromaticity; figure of merit; COLOR-DIFFERENCE FORMULA; NANOSTRUCTURES; METAMATERIALS; SENSORS; ARRAYS; ULTRAVIOLET; SUBSTRATE; NANODISKS; CLUSTERS; FILTERS;
D O I
10.1021/acsnano.5b04864
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aluminum is an abundant and high-quality material for plasmonics with potential for large-area, low-cost photonic technologies. Here we examine aluminum nanoclusters with plasmonic Fano resonances that can be tuned from the near-UV into the visible region of the spectrum. These nanoclusters can be designed with specific chromaticities in the blue-green region of the spectrum and exhibit a remarkable spectral sensitivity to changes in the local dielectric environment. We show that such structures can be used quite generally for colorimetric localized surface plasmon resonance (LSPR) sensing, where the presence of analytes is detected by directly observable color changes rather than through photodetectors and spectral analyzers. To quantify our results and provide a metric for optimization of such structures for colorimetric LSPR sensing, we introduce a figure of merit based on the color perception ability of the human eye.
引用
收藏
页码:10628 / 10636
页数:9
相关论文
共 48 条
[11]   Transition from Isolated to Collective Modes in Plasmonic Oligomers [J].
Hentschel, Mario ;
Saliba, Michael ;
Vogelgesang, Ralf ;
Giessen, Harald ;
Alivisatos, A. Paul ;
Liu, Na .
NANO LETTERS, 2010, 10 (07) :2721-2726
[12]   Efficient UV photocatalysis assisted by densely distributed aluminum nanoparticles [J].
Honda, M. ;
Kumamoto, Y. ;
Taguchi, A. ;
Saito, Y. ;
Kawata, S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (18)
[13]   Aluminum Plasmonic Multicolor Meta-Hologram [J].
Huang, Yao-Wei ;
Chen, Wei Ting ;
Tsai, Wei-Yi ;
Wu, Pin Chieh ;
Wang, Chih-Ming ;
Sun, Greg ;
Tsai, Din Ping .
NANO LETTERS, 2015, 15 (05) :3122-3127
[14]   UV fluorescence enhancement by Al and Mg nanoapertures [J].
Jiao, Xiaojin ;
Wang, Yunshan ;
Blair, Steve .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (18)
[15]   Aluminum for Plasmonics [J].
Knight, Mark W. ;
King, Nicholas S. ;
Liu, Lifei ;
Everitt, Henry O. ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS NANO, 2014, 8 (01) :834-840
[16]   Aluminum Plasmonic Nanoantennas [J].
Knight, Mark W. ;
Liu, Lifei ;
Wang, Yumin ;
Brown, Lisa ;
Mukherjee, Shaunak ;
King, Nicholas S. ;
Everitt, Henry O. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2012, 12 (11) :6000-6004
[17]   Localized surface plasmon resonances in aluminum nanodisks [J].
Langhammer, Christoph ;
Schwind, Markus ;
Kasemo, Bengt ;
Zoric, Igor .
NANO LETTERS, 2008, 8 (05) :1461-1471
[18]   Fano Resonances in Plasmonic Nanoclusters: Geometrical and Chemical Tunability [J].
Lassiter, J. Britt ;
Sobhani, Heidar ;
Fan, Jonathan A. ;
Kundu, Janardan ;
Capasso, Federico ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2010, 10 (08) :3184-3189
[19]   Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption [J].
Le, Fei ;
Brandl, Daniel W. ;
Urzhumov, Yaroslav A. ;
Wang, Hui ;
Kundu, Janardan ;
Halas, Naomi J. ;
Aizpurua, Javier ;
Nordlander, Peter .
ACS NANO, 2008, 2 (04) :707-718
[20]   Aluminum Nano arrays for Plasmon-Enhanced Light Harvesting [J].
Lee, Minah ;
Kim, Jong Uk ;
Lee, Ki Joong ;
Ahn, SooHoon ;
Shin, Yong-Beom ;
Shin, Jonghwa ;
Park, Chan Beum .
ACS NANO, 2015, 9 (06) :6206-6213