Programmable photonic signal processor chip for radiofrequency applications

被引:346
作者
Zhuang, Leimeng [1 ]
Roeloffzen, Chris G. H. [2 ]
Hoekman, Marcel [3 ]
Boller, Klaus-J. [4 ]
Lowery, Arthur J. [1 ,5 ]
机构
[1] Monash Univ, Elect & Comp Syst Engn, Electrophoton Lab, Clayton, Vic 3800, Australia
[2] SATRAX BV, NL-7500 AL Enschede, Netherlands
[3] LioniX BV, NL-7500 AL Enschede, Netherlands
[4] Univ Twente, Laser Phys & Nonlinear Opt Grp, NL-7500 AL Enschede, Netherlands
[5] Monash Univ, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
RING RESONATORS; DELAY-LINE; FILTER; PERFORMANCE; TRIPLEX;
D O I
10.1364/OPTICA.2.000854
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrated microwave photonics, an emerging technology combining radio frequency (RF) engineering and integrated photonics, has great potential to be adopted for wideband analog processing applications. However, it has been a challenge to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts. Here, we introduce a disruptive approach to tackle this need, which is analogous to an electronic field-programmable gate array. We use a grid of tunable Mach -Zehnder couplers interconnected in a two-dimensional mesh network, each working as a photonic processing unit. Such a device is able to be programmed into many different circuit topologies and thereby provide a diversity of functions. This paper provides, to the best of our knowledge, the first ever demonstration of this concept and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage, i.e., 1.6 -6 GHz, and variable passband shaping ranging from a 55 dB extinction notch filter to a 1.6 GHz bandwidth flat-top filter. (C) 2015 Optical Society of America
引用
收藏
页码:854 / 859
页数:6
相关论文
共 52 条
[1]   Signal-to-noise performance of two analog photonic links using different noise reduction techniques [J].
Ackerman, Edward I. ;
Betts, Gary E. ;
Burns, William K. ;
Campbell, Joseph C. ;
Cox, Charles H., III ;
Duan, Ning ;
Prince, Joelle L. ;
Regan, Michael D. ;
Roussell, Harold V. .
2007 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-6, 2007, :51-+
[2]  
[Anonymous], 2010, Wireless Communication Systems-From RF Subsystems to 4G Enabling Technologies
[3]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[4]   Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon [J].
Burla, Maurizio ;
Li, Ming ;
Cortes, Luis Romero ;
Wang, Xu ;
Fernandez-Ruiz, Maria Rosario ;
Chrostowski, Lukas ;
Azana, Jose .
OPTICS LETTERS, 2014, 39 (21) :6241-6244
[5]   A tutorial on microwave photonic filters [J].
Capmany, J ;
Ortega, B ;
Pastor, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) :201-229
[6]   Microwave photonics combines two worlds [J].
Capmany, Jose ;
Novak, Dalma .
NATURE PHOTONICS, 2007, 1 (06) :319-330
[7]   Graphene Integrated Microwave Photonics [J].
Capmany, Jose ;
Domenech, David ;
Munoz, Pascual .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (20) :3785-3796
[8]   Wide-bandwidth continuously tunable optical delay line using silicon microring resonators [J].
Cardenas, Jaime ;
Foster, Mark A. ;
Sherwood-Droz, Nicolas ;
Poitras, Carl B. ;
Lira, Hugo L. R. ;
Zhang, Beibei ;
Gaeta, Alexander L. ;
Khurgin, Jacob B. ;
Morton, Paul ;
Lipson, Michal .
OPTICS EXPRESS, 2010, 18 (25) :26525-26534
[9]   Integrated Microwave Photonic Filter on a Hybrid Silicon Platform [J].
Chen, Hui-Wen ;
Fang, Alexander W. ;
Peters, Jonathan D. ;
Wang, Zhi ;
Bovington, Jock ;
Liang, Di ;
Bowers, John E. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (11) :3213-3219
[10]  
Cox C.H., 2004, ANALOG OPTICAL LINKS