共 35 条
Robust estimation methods for a class of log-linear count time series models
被引:9
|作者:
Kitromilidou, Stella
[1
]
Fokianos, Konstantinos
[1
]
机构:
[1] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
关键词:
autocorrelation;
canonical link;
conditionally unbiased bounded-influence estimator;
interventions;
log-linear Poisson model;
Mallows quasi-likelihood estimator;
tuning constant;
simulation;
POISSON AUTOREGRESSION;
REGRESSION-MODELS;
GARCH MODELS;
INTERVENTIONS;
D O I:
10.1080/00949655.2015.1035271
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
We study robust estimation of a log-linear Poisson model for count time series analysis. More specifically, we study robust versions of maximum likelihood estimators (MLEs) under three different forms of interventions: additive outliers (AOs), transient shifts (TSs) and level shifts (LSs). We estimate the parameters using the MLE, the conditionally unbiased bounded-influence estimator and the Mallows quasi-likelihood estimator and compare all three estimators in terms of their mean-square error, bias and mean absolute error. Our empirical results illustrate that under a LS or a TS there are no significant differences among the three estimators and the most interesting results are obtained in the presence of AOs. The results are complemented by a real data example.
引用
收藏
页码:740 / 755
页数:16
相关论文