Electron Beam-Induced Reduction of Cuprite

被引:1
|
作者
Siudzinska, Anna [1 ,2 ,3 ]
Gorantla, Sandeep M. [1 ]
Serafinczuk, Jaroslaw [1 ,4 ]
Kudrawiec, Robert [1 ,5 ]
Hommel, Detlef [1 ,2 ]
Bachmatiuk, Alicja [1 ,3 ,6 ]
机构
[1] PORT Polish Ctr Technol Dev, Lukasiewicz Res Network, Stablowicka 147, PL-54066 Wroclaw, Poland
[2] PAS, Inst Low Temp & Struct Res, 2 Okolna St, PL-50422 Wroclaw, Poland
[3] Inst Complex Mat, IFW Dresden, 20 Helmholtz Str, D-01069 Dresden, Germany
[4] Wroclaw Univ Sci & Technol, Fac Elect Photon & Microsyst, Dept Nanometrol, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[5] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Semicond Mat Engn, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[6] Soochow Univ, Soochow Inst Energy & Mat Innovat, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
关键词
electron beam irradiation; cupprite; catalysis; HRTEM; IN-SITU; OXIDATION;
D O I
10.3390/met12122151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cu-based materials are used in various industries, such as electronics, power generation, and catalysis. In particular, monolayered cuprous oxide (Cu2O) has potential applications in solar cells owing to its favorable electronic and magnetic properties. Atomically thin Cu2O samples derived from bulk cuprite were characterized by high-resolution transmission electron microscopy (HRTEM). Two voltages, 80 kV and 300 kV, were explored for in situ observations of the samples. The optimum electron beam parameters (300 kV, low-current beam) were used to prevent beam damage. The growth of novel crystal structures, identified as Cu, was observed in the samples exposed to isopropanol (IPA) and high temperatures. It is proposed that the exposure of the copper (I) oxide samples to IPA and temperature causes material nucleation, whereas the consequent exposure via e-beams generated from the electron beam promotes the growth of the nanosized Cu crystals.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Beam-induced damage to thin specimens in an intense electron probe
    Egerton, RF
    Wang, F
    Crozier, PA
    MICROSCOPY AND MICROANALYSIS, 2006, 12 (01) : 65 - 71
  • [42] Effect of electron beam-induced deposition and etching under bias
    Choi, Young R.
    Rack, Philip D.
    Frost, Bernhard
    Joy, David C.
    SCANNING, 2007, 29 (04) : 171 - 176
  • [43] Electron beam-induced current investigation of GaN Schottky diode
    A. Matoussi
    T. Boufaden
    S. Guermazi
    Y. Mlik
    B. El Jani
    A. Toureille
    Journal of Electronic Materials, 2005, 34 : 1059 - 1064
  • [44] ELECTRON BEAM-INDUCED POLYMERIZATION OF MONOMERS ON PRECOATED GLASS FIBERS
    NEEDLES, HL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1978, 176 (SEP): : 55 - 55
  • [45] STEM Imaging with Beam-Induced Hole and Secondary Electron Currents
    Hubbard, William A.
    Mecklenburg, Matthew
    Chan, Ho Leung
    Regan, B. C.
    PHYSICAL REVIEW APPLIED, 2018, 10 (04):
  • [46] Electron beam-induced changes in vitreous sections of biological samples
    Blanc, NS
    Studer, D
    Ruhl, K
    Dubochet, J
    JOURNAL OF MICROSCOPY, 1998, 192 : 194 - 201
  • [47] Sidewall angle tuning in focused electron beam-induced processing
    Hari, Sangeetha
    van Dorp, Willem F.
    Mulders, Johannes J. L.
    Trompenaars, Piet H. F.
    Kruit, Pieter
    Hagen, Cornelis W.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2024, 15 : 447 - 456
  • [48] Beam-induced electron multipacting with mode resonance in a vacuum chamber
    Cha, H. J.
    de Jauregui, D. Saez
    Grau, A.
    Mueller, A-S
    JOURNAL OF INSTRUMENTATION, 2021, 16 (11):
  • [49] FLUORESCENCE OF ANTHRACENE VAPORS IN ELECTRON BEAM-INDUCED SOLID DISCHARGE
    GRUZINSKII, VV
    KAPUTERKO, MN
    DOKLADY AKADEMII NAUK BELARUSI, 1987, 31 (09): : 809 - 811
  • [50] Electron beam-induced oxygen desorption in γ-LiAlO2
    Hetaba, Walid
    Mogilatenko, Anna
    Neumann, Wolfgang
    MICRON, 2010, 41 (05) : 479 - 483